摘要:
A method of forming features on substrates by imprinting is provided. The method comprises: (a) forming a polymer solution comprising at least one polymer dissolved in at least one polymerizable monomer; and (b) depositing the polymer solution on a substrate to form a liquid film thereon; and then either: (c) curing the liquid film by causing the monomer(s) to polymerize and optionally cross-linking the polymer(s) to thereby form a polymer film, the polymer film having a glass transition temperature (Tg); and imprinting the polymer film with a mold having a desired pattern to form a corresponding negative pattern in the polymer film, or (d) imprinting the liquid film with the mold and curing it to form the polymer film. The temperature of imprinting is as little as 10° C. above the Tg, or even less if the film is in the liquid state. The pressure of the imprinting can be within the range of 100 to 500 psi.
摘要:
A wire bonding method capable of further improving accuracy in wire bonding and realizing faster wire bonding including: transferring a semiconductor chip to a bonding center; capturing an image of a bonding point on the semiconductor chip; recognizing a position of the bonding point; performing wire bonding to the bonding point that has been corrected; capturing a post-bonding image of the semiconductor chip; transferring a next semiconductor chip to the bonding center; capturing an image of a bonding point on the next semiconductor chip; recognizing a position of the bonding point of the next semiconductor chip; and then recognizing an amount of displacement in the post-bonding image of the semiconductor chip during wire bonding to the bonding point that is of the next semiconductor chip and has been corrected.
摘要:
Systems and methods of aligning a lithographic mask are described. In one aspect, a substrate and a lithographic mask are aligned based at least in part on a motive force between a substrate alignment mark on the substrate and a mask alignment mark on the lithographic mask that induces movement of at least one of the substrate and the lithographic mask into mutual alignment.
摘要:
A nanoscale lithographic method in which a reusable conductive mask, having a pattern of conductive surfaces and insulating surfaces, is positioned upon a substrate whose surface contains an electrically responsive resist layer over a buried conductive layer. When an electric field is applied between the conductive mask and buried conductive layer, the resist layer is altered in portions adjacent the conductive areas of the mask. Selective processing is performed on the surface of the substrate, after mask removal, to remove portions of the resist layer according to the pattern transferred from the mask. The substrate may be a target substrate, or the substrate may be utilized for a lithographic masking step of another substrate. In one aspect of the invention the electrodes to which the charge is applied are divided, such as into a plurality of rows and columns wherein any desired pattern may be created without the need to fabricate specific masks.
摘要:
This invention is generally directed to a recombinant method of producing SDF-1 receptor antagonists. More particularly, the invention is directed to the isolated and/or recombinant polynucleotide sequences encoding analogs of human SDF-1 alpha or beta and, in particular, SDF-1 analogs having the proline at residue position number 2 replaced with a glycine to provide an SDF-1 receptor antagonist. The recombinant method can be used to produce drugs for a variety of therapeutic uses including, but not limited to, treatment of cancer, inhibiting angiogenesis, and hematopoietic cell proliferation.
摘要:
Methods for forming a predetermined pattern of catalytic regions having nanoscale dimensions are provided for use in the growth of nanowires. The methods include one or more nanoimprinting steps to produce arrays of catalytic nanoislands or nanoscale regions of catalytic material circumscribed by noncatalytic material.
摘要:
A method, system, and computer-readable medium for emulating a converged network are provided. A media gateway receives a call at a first interface of a first network type. The call is processed for distribution on a second network type. The processed call is transmitted to a second interface of a second network type. A service module of the media gateway receives the processed call.
摘要:
Embodiments of the present invention are directed to methods for fabricating microscale-to-nanoscale interfaces. In numerous embodiments of the present invention, hybrid microscale/nanoscale crossbar multiplexers/demultiplexers provide for selection and control of individual nanowires through a set of microscale signal lines. In order to overcome the difficulty of aligning nanowires with submicroscale and microscale signal lines, at least a portion of the interconnections between nanowires and sub-microscale or microscale signal lines are randomly generated by one of various connection-fabrication methods. Addresses for individual nanowires, or groups of nanowires, can be discovered by testing the microscale-to-nanoscale interfaces.
摘要:
A synthesis method of alanyl-glutamine includes the steps of: The N-terminal protected alanine reacts with triphenylphosphine and hexachloroethane in organic solvent to form active ester, the active ester reacts with glutamine in a solution mixture containing organic solvent and aqueous solution of inorganic base, the resultant mixture is acidified with inorganic acid, and then the N-terminal protecting group is removed. In this method, the raw materials are cheap, the synthesis technique is simple, no disposals of separation and purification are needed, the product is easy to be separated and purified, the toxicities of all the reagents used in the course of production are minimal, it is advantageous to environment protection.
摘要:
A method is provided for imprinting a pattern having nanoscale features from a mold into the patternable layer on a substrate. The method comprises: providing the mold; forming the patternable layer on the substrate; and imprinting the mold into the patternable layer, wherein the patternable layer comprises a metal or alloy having a transition temperature from its solid form to its liquid form that is within a range of at least 10° above room temperature.