Abstract:
A method for manufacturing a chip ceramic electronic component that includes an outer electrode including a glass-free sintered layer including no glass. A glass-free conductive paste including a nickel powder, a metal powder, such as tin, having a melting point of lower than about 500° C., and a thermosetting resin, and not including glass, is applied to cover a portion of a surface of a ceramic body. The ceramic body to which the glass-free conductive paste has been applied is subjected to a heat treatment at a temperature higher than or equal to a temperature about 400° C. higher than the curing temperature of the thermosetting resin. The thermosetting resin is thermally decomposed or burned such that little or none remains, and the nickel powder and metal powder having a melting point of lower than about 500° C. are sintered to form a unified sintered metal body.
Abstract:
A multilayer ceramic capacitor includes a ceramic base body including ceramic layers and internal electrode layers, which are stacked on each other, and a pair of external electrodes provided on the end surfaces of the ceramic base body and electrically connected to the internal electrode layers. Each of the external electrodes includes an underlying electrode layer and a resin external electrode layer stacked on the underlying electrode layer. The resin external electrode layer includes a thermosetting resin, a metal powder, and an alkyl-based silane coupling agent.
Abstract:
A ceramic electronic component includes a rectangular or substantially rectangular parallelepiped-shaped stack in which a ceramic layer and an internal electrode are alternately stacked and an external electrode provided on a portion of a surface of the stack and electrically connected to the internal electrode. The external electrode includes an inner external electrode covering a portion of the surface of the stack and including a mixture of a resin component and a metal component and an outer external electrode covering the inner external electrode and including a metal component. A volume occupied by the resin component in the inner external electrode is within a prescribed range.
Abstract:
A ceramic body is prepared that includes an inner electrode disposed inside the ceramic body and in which an end portion of the inner electrode is led to a surface of the ceramic body. An electrode layer is formed on the surface of the ceramic body so as to cover the end portion of the inner electrode, the electrode layer containing a resin, a first metal filler that contains a first metal component, and a second metal filler that contains a second metal component having a higher melting point than the first metal component. A heating step of heating the electrode layer is performed to form an electrode including a metal layer that is located on the surface of the ceramic body and that contains the first and second metal components and a metal contained in the inner electrode.
Abstract:
A ceramic electronic component includes a rectangular or substantially rectangular parallelepiped shaped laminate in which a ceramic layer and an internal electrode are alternately laminated and an external electrode provided on a portion of a surface of the laminate and electrically connected to the internal electrode. The external electrode includes an inner external electrode covering a portion of the surface of the laminate and including a mixture of a resin component and a metal component and an outer external electrode covering the inner external electrode and including a metal component. The inner external electrode includes, as a metal component, a first metal component of which a portion forms an alloy with the internal electrode so as to connect the internal electrode and the inner external electrode to each other, and a second metal component higher in melting point than the first metal component, of which a portion forms an alloy with the first metal component so as to connect the inner external electrode and the outer external electrode to each other. A concentration of a metal in a surface layer of the inner external electrode is not lower than about 17%.
Abstract:
In an electronic component, when L0 is a dimension of an electronic component body in a first direction, L1 is a distance between a first outer electrode and a second outer electrode on a first surface in the first direction, and L2 is a dimension of each of the first and second outer electrodes on the first surface in the first direction, 0%