Abstract:
A multilayer ceramic capacitor includes a multilayer body that includes ceramic layers and inner conductor layers arranged in a stacking direction and that includes a first surface in which the inner conductor layers are exposed, and an outer electrode on the first surface of the multilayer body. The inner conductor layers contain Ni. The outer electrode includes a base layer that directly covers at least a portion of the first surface and is connected to the inner conductor layers. The base layer contains a metal and glass and includes a Ni diffusion portion connected to the inner conductor layers, the Ni diffusion portion containing Ni. A ratio of a diffusion depth of the Ni diffusion portion to a thickness of the base layer is smaller on two of the inner conductor layers that are located outermost than on other inner conductor layers.
Abstract:
A multilayer ceramic capacitor includes a multilayer body that includes ceramic layers and inner conductor layers arranged in a stacking direction and that includes a first surface in which the inner conductor layers are exposed, and an outer electrode on the first surface of the multilayer body. The inner conductor layers contain Ni. The outer electrode includes a base layer that directly covers at least a portion of the first surface and is connected to the inner conductor layers. The base layer contains a metal and glass and includes a Ni diffusion portion connected to the inner conductor layers, the Ni diffusion portion containing Ni. A ratio of a diffusion depth of the Ni diffusion portion to a thickness of the base layer is smaller on two of the inner conductor layers that are located outermost than on other inner conductor layers.
Abstract:
A ceramic electronic component includes a ceramic body, a glass coating layer, and an electrode terminal. The ceramic body includes a plurality of internal electrodes whose ends are exposed on the surface of the ceramic body. The glass coating layer covers a portion of the ceramic body on which the internal electrodes are exposed. The electrode terminal is provided directly on the glass coating layer. The electrode terminal includes a plating film. The glass coating layer is made of a glass medium in which metal powder particles are dispersed. The metal powder particles define conduction paths that electrically connect the internal electrodes with the electrode terminal.
Abstract:
A multilayer ceramic capacitor includes a capacitor main body including a multilayer body and external electrodes, the multilayer body including dielectric layers and internal electrode layers stacked alternately, each of the external electrodes being provided on an end surface in a length direction of the multilayer body and being connected to the internal electrode layers, and two interposers on one surface in a stacking direction of the capacitor main body and spaced apart from each other in the length direction, the interposers including bonding surfaces bondable to the one surface of the capacitor main body and including inner edge portions which are opposite to each other and each having a length longer than a length in a width direction of the multilayer body.
Abstract:
A multilayer ceramic capacitor includes a capacitor main body including a multilayer body and external electrodes, the multilayer body including dielectric layers and internal electrode layers stacked alternately, each of the external electrodes being provided on an end surface in a length direction of the multilayer body and being connected to the internal electrode layers, and two interposers on one surface in a stacking direction of the capacitor main body and spaced apart from each other in the length direction, the interposers including bonding surfaces bondable to the one surface of the capacitor main body and including inner edge portions which are opposite to each other and each having a length longer than a length in a width direction of the multilayer body.
Abstract:
A ceramic electronic component includes a ceramic body, a glass coating layer, and an electrode terminal. The ceramic body includes a plurality of internal electrodes whose ends are exposed on the surface of the ceramic body. The glass coating layer covers a portion of the ceramic body on which the internal electrodes are exposed. The electrode terminal is provided directly on the glass coating layer. The electrode terminal includes a plating film. The glass coating layer is made of a glass medium in which metal powder particles are dispersed. The metal powder particles define conduction paths that electrically connect the internal electrodes with the electrode terminal.
Abstract:
In an electronic component, when L0 is a dimension of an electronic component body in a first direction, L1 is a distance between a first outer electrode and a second outer electrode on a first surface in the first direction, and L2 is a dimension of each of the first and second outer electrodes on the first surface in the first direction, 0%