摘要:
A scanning electron microscope with an energy filter which can positively utilize secondary electrons and/or reflected electrons which collide against a mesh electrode and are lost. The scanning electron microscope which has a porous electrode for producing an electric field for energy-filtering electrons produced by applying a primary electron beam to a sample and a 1st electron detector which detects electrons passing through the porous electrode is characterized by further having a porous structure provided near the sample, a deflector which deflects electrons from the axis of the primary electron beam, and a 2nd electron detector which detects the electrons deflected by the deflector.
摘要:
The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices.To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges. Yet another method is disclosed for correcting the measurement length value or magnification based on fluctuations found by measuring the amount of electrostatic charge at the specified points under at least two charged particle optical conditions, and then using a charged particle beam to measure fluctuations in measurement dimensions occurring due to fluctuations in the electrostatic charge at the specified locations.
摘要:
A scanning electron microscope with an energy filter which can positively utilize secondary electrons and/or reflected electrons which collide against a mesh electrode and are lost. The scanning electron microscope which has a porous electrode for producing an electric field for energy-filtering electrons produced by applying a primary electron beam to a sample and a 1st electron detector which detects electrons passing through the porous electrode is characterized by further having a porous structure provided near the sample, a deflector which deflects electrons from the axis of the primary electron beam, and a 2nd electron detector which detects the electrons deflected by the deflector.
摘要:
A scanning electron microscope having a monochromator that can automatically adjust an electron beam entering the monochromator and operating conditions of the monochromator. The scanning electron microscope having a monochromator is equipped with, between an electron source and the monochromator, a first focusing lens for adjusting focusing of the electron beam entering the monochromator and a first astigmatism correcting lens for correcting astigmatism of the electron beam entering the monochromator. The microscope further includes a means of obtaining an image of an electron-beam adjustment sample disposed where the electron beam in the monochromator is focused, and based on the obtained image, driving the first focusing lens and the first astigmatism correcting lens so that the focusing and astigmatism of the electron beam entering the monochromator are adjusted.
摘要:
An invention providing a scanning electron microscope composed of a monochromator capable of high resolution, monochromatizing the energy and reducing chromatic aberrations without significantly lowering the electrical current strength of the primary electron beam. A scanning electron microscope is installed with a pair of sectorial magnetic and electrical fields having opposite deflection directions to focus the electron beam and then limit the energy width by means of slits, and another pair of sectorial magnetic and electrical fields of the same shape is installed at a position forming a symmetrical mirror versus the surface containing the slits. This structure acts to cancel out energy dispersion at the object point and symmetrical mirror positions, and by spatially contracting the point-converged spot beam with a converging lens system, improves the image resolution of the scanning electron microscope.
摘要:
A disclosed scanning electron microscope (SEM) is intended to prevent deterioration of resolution due to increase in off-axis aberration resulting from a deviation of a primary electron bean from the optical axis of the microscope. An example of the SEM has an image shifting deflector system including two deflectors disposed respectively at upper and lower stages. The deflector at the lower stage is a multipole electrostatic deflecting electrode and is disposed in an objective. Even if the distance of image shifting is great, an image of a high resolution can be formed, and dimensions can be measured in a high accuracy. The SEM is able to achieve precision inspection at a high throughput when applied to inspection in semiconductor device fabricating processes that process a wafer having a large area and provided with very minute circuit elements.
摘要:
A scanning electron microscope with an energy filter which can positively utilize secondary electrons and/or reflected electrons which collide against a mesh electrode and are lost. The scanning electron microscope which has a porous electrode for producing an electric field for energy-filtering electrons produced by applying a primary electron beam to a sample and a 1st electron detector which detects electrons passing through the porous electrode is characterized by further having a porous structure provided near the sample, a deflector which deflects electrons from the axis of the primary electron beam, and a 2nd electron detector which detects the electrons deflected by the deflector.
摘要:
A scanning electron microscope with an energy filter which can positively utilize secondary electrons and/or reflected electrons which collide against a mesh electrode and are lost. The scanning electron microscope which has a porous electrode for producing an electric field for energy-filtering electrons produced by applying a primary electron beam to a sample and a 1st electron detector which detects electrons passing through the porous electrode is characterized by further having a porous structure provided near the sample, a deflector which deflects electrons from the axis of the primary electron beam, and a 2nd electron detector which detects the electrons deflected by the deflector.
摘要:
The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices.To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges. Yet another method is disclosed for correcting the measurement length value or magnification based on fluctuations found by measuring the amount of electrostatic charge at the specified points under at least two charged particle optical conditions, and then using a charged particle beam to measure fluctuations in measurement dimensions occurring due to fluctuations in the electrostatic charge at the specified locations.
摘要:
An invention providing a scanning electron microscope composed of a monochromator capable of high resolution, monochromatizing the energy and reducing chromatic aberrations without significantly lowering the electrical current strength of the primary electron beam. A scanning electron microscope is installed with a pair of sectorial magnetic and electrical fields having opposite deflection directions to focus the electron beam and then limit the energy width by means of slits, and another pair of sectorial magnetic and electrical fields of the same shape is installed at a position forming a symmetrical mirror versus the surface containing the slits. This structure acts to cancel out energy dispersion at the object point and symmetrical mirror positions, and by spatially contracting the point-converged spot beam with a converging lens system, improves the image resolution of the scanning electron microscope.