Abstract:
A smart phone or tablet includes laser diodes, at least some of which may be pulsed and generate near-infrared light and include Bragg reflectors to direct light to tissue/skin. An array of laser diodes generates near-infrared light and has an assembly in front of the array that forms the light into a plurality of spots on the tissue/skin. A receiver includes detectors that receive light reflected from the tissue/skin. An infrared camera receives light reflected from the tissue/skin and generates data based on the received light. The smart phone or tablet is configured to generate a two-dimensional or three-dimensional image using at least part of the data from the infrared camera.
Abstract:
A wearable device includes a measurement device having light emitting diodes (LEDs) measuring a physiological parameter. The measurement device modulates the LEDs to generate an optical beam having a near-infrared wavelength between 700-2500 nanometers. Lenses receive and deliver the optical beam to tissue, which reflects the optical beam to a receiver having spatially separated detectors coupled to analog-to-digital converters configured to generate receiver outputs. The receiver captures light while the LEDs are off, and reflected light from the tissue while the LEDs are on, to generate first and second signals, respectively. Signal-to-noise ratio is improved by differencing the first and second signals and by differencing the receiver outputs. The measurement device further improves signal-to-noise ratio of the reflected optical beam by increasing light intensity of the LEDs relative to an initial light intensity. The measurement device generates an output signal representing a non-invasive measurement on blood contained within the tissue.
Abstract:
A wearable device for use with a smart phone or tablet includes a measurement device having a plurality of LEDs generating a near-infrared input optical beam that measures physiological parameters. The measurement device includes lenses configured to receive and to deliver the input beam to skin which reflects the beam. The measurement device includes a reflective surface configured to receive and redirect the light from the skin, and a receiver configured to receive the reflected beam. The light source is configured to increase a signal-to-noise ratio of the input beam reflected from the skin by increasing the light intensity from the LEDs and modulation of the LEDs. The measurement device is configured to generate an output signal representing a non-invasive measurement on blood contained within the skin. The wearable device is configured to wirelessly communicate with the smart phone or tablet which receives and processes the output signal.
Abstract:
A measurement system includes semiconductor light sources generating an input beam, optical amplifiers receiving the input beam and delivering an intermediate beam, and fused silica fibers with core diameters less than 400 microns receiving and delivering the intermediate beam to the fibers forming a first optical beam. A nonlinear element receives the first optical beam and broadens the spectrum to at least 10 nm through a nonlinear effect to form the output optical beam which includes a near-infrared wavelength of 700-2500 nm. A measurement apparatus is configured to receive the output optical beam and deliver it to a sample to generate a spectroscopy output beam. A receiver receives the spectroscopy output beam having a bandwidth of at least 10 nm and processes the beam to generate an output signal, wherein the light source and the receiver are remote from the sample, and wherein the sample comprises plastics or food industry goods.
Abstract:
An optical system for use in material processing includes a plurality of semiconductor diodes coupled to a beam combiner to generate a multiplexed optical beam. A cladding pumped fiber amplifier or laser receives the multiplexed optical beam and forms an intermediate beam having at least a first wavelength. An optical element receives the intermediate beam and forms an output beam with an output beam wavelength, wherein the output beam wavelength is at least in part longer than the first wavelength. A subsystem includes lenses or mirrors to deliver a delivered portion of the output beam to a sample. The delivered output beam has a temporal duration greater than about 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity of less than approximately 50 MW/cm2. The output beam has a time averaged output power of 20 mW or more.
Abstract translation:用于材料处理的光学系统包括耦合到光束组合器的多个半导体二极管以产生多路复用的光束。 包层泵浦光纤放大器或激光器接收复用的光束并形成具有至少第一波长的中间光束。 光学元件接收中间光束并形成具有输出光束波长的输出光束,其中输出光束波长至少部分地长于第一波长。 子系统包括透镜或反射镜,用于将输出光束的传送部分传送到样品。 所输出的输出光束具有大于约30皮秒的时间持续时间,连续波和兆赫兹或更高之间的重复频率以及小于约50MW / cm 2的时间平均强度。 输出光束的时间平均输出功率为20mW以上。
Abstract:
A diagnostic system includes a plurality of semiconductor diodes, a multiplexer, and one or more waveguide structures to form an output beam. A lens system communicates some of the output beam onto a part of a user's body comprising blood to perform a measurement. A software application is capable of generating data based at least in part on the measurement, and it operates on a control system that may have a touch-screen, a proximity sensor, and a wireless transceiver to transmit wireless data over a wireless link. A host comprises a digital file, control logic at the host to process at least the portion of the wireless data to generate a status of the user, a memory storage device for recording the status, and an output for communicating at least a portion of the status or associated information over a communication link to one or more remote display output devices.
Abstract:
A diagnostic system includes sensors with at least one being a diagnostic device comprising one or more solid state light sources used in a differential measurement. A software application capable of generating physiological information based on the sensors is operable on a control system adapted to receive, store and process the physiological information. The control system includes a touch-screen, circuitry for obtaining position information from a location sensor, and a wireless transceiver to transmit wireless data including the physiological information over a wireless link and is further capable of receiving voice and manually entered input signals. A host includes a digital file for receiving and storing the wireless data, control logic to process the wireless data to generate a status of the user, memory for recording the status, and an output for communicating the status over a communication link to display output devices located remotely from the host.
Abstract:
A wearable device to measure a user's physiological parameters comprising one or more biosensors, as well as a light source comprising light emitting diodes, lenses for directing light towards tissue of the user comprising blood vessels, and a detection system receiving reflected tissue light. The physiological parameters, for example hypertension, are measured with a differential measurement. For example, the physiological parameters may be associated with pulse rate and blood flow. The output signal is associated with the physiological parameters, and artificial intelligence may be used in making decisions regarding the output signal. Signal-to-noise ratio of the output signal may be improved by synchronizing the detection system to the light source, increasing light intensity, and detecting a change. The wearable device is configured to determine that is being worn by the user and may be configured to communicate with a smartphone or tablet.
Abstract:
A measurement system comprises near-infrared semiconductor diodes operating in pulsed mode and a detection system comprising a camera configured to be synchronized to the diodes and to capture light reflected from bodily tissue. The measurement system may also comprise a time-of-flight sensor or a beam splitter to separate the diode light into a plurality of spatially separated lights. The measurement system including a processor is further coupled to a chemical detection system comprising a thermal or lamp based infrared light source and a multi-path spectroscopy system, comprising a first arm performing spectroscopy on a first gas and a second arm performing spectroscopy on a second gas. The processor is configured to process the image from the camera system and the information from the spectroscopy system. The first gas may comprise carbon dioxide, while the second gas may comprise hydrocarbons. The measurement system may be mounted in a vehicle.
Abstract:
An active remote sensing system comprises near-infrared laser diodes including one or more Bragg reflectors and having a pulsed output with duration between 0.5 to 2 nanoseconds. A first lens receives and directs the laser diode light to an object or an atmosphere. A detection system receives light reflected from the object or atmosphere, which comprises a second lens and spectral filters in front of a photodiode array. The detection system is synchronized to the laser diodes and performs a time-of-flight measurement. The time-of-flight measurement is performed at least in part by measuring a temporal distribution of photons in the light reflected from the object or the atmosphere. The active remote sensing system including the processor is configured to monitor gases in the atmosphere based at least in part on changes in the temporal distribution of photons in the light reflected from the object or the atmosphere.