Abstract:
Emissive micro-pixel spatial light modulators with non-telecentric emission are introduced. The individual light emission from each multi-color micro-scale emissive pixel is directionally modulated in a unique direction to enable application-specific non-telecentric emission pattern from the micro-pixel array of the emissive spatial light modulator. Design methods for directionally modulating the light emission of the individual micro-pixels using micro-pixel level optics are described. Monolithic wafer level optics methods for fabricating the micro-pixel level optics are also described. An emissive multi-color micro-pixel spatial light modulator with non-telecentric emission is used to exemplify the methods and possible applications of the present invention: ultra-compact image projector, minimal cross-talk 3D light field display, multi-view 2D display, and directionally modulated waveguide optics for see-through near-eye displays.
Abstract:
Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.
Abstract:
Emissive micro-pixel spatial light modulators with non-telecentric emission are introduced. The individual light emission from each multi-color micro-scale emissive pixel is directionally modulated in a unique direction to enable application-specific non-telecentric emission pattern from the micro-pixel array of the emissive spatial light modulator. Design methods for directionally modulating the light emission of the individual micro-pixels using micro-pixel level optics are described. Monolithic wafer level optics methods for fabricating the micro-pixel level optics are also described. An emissive multi-color micro-pixel spatial light modulator with non-telecentric emission is used to exemplify the methods and possible applications of the present invention: ultra-compact image projector, minimal cross-talk 3D light field display, multi-view 2D display, and directionally modulated waveguide optics for see-through near-eye displays.
Abstract:
Wearable augmented reality display systems are provided. One or a plurality of emissive display elements are embedded in the bridge area of an eyeglass frame. The lenses are provided with a set of transmissive diffractive optical elements and partially reflective diffractive optical elements. The display outputs are directed toward the lens elements whereby the diffractive elements in turn direct the outputs toward the eye-boxes of the viewer.
Abstract:
Split exit pupil (or split eye-box) heads-up display (HUD) systems and methods are described. The described HUD system methods make use of a split exit pupil design method that enables a modular HUD system and allows the HUD system viewing eye-box size to be tailored while reducing the overall HUD volumetric aspects. A HUD module utilizes a high brightness small size micro-pixel imager to generate a HUD virtual image with a given viewing eye-box segment size. When integrated together into a HUD system, a multiplicity of such HUD modules displaying the same image would enable such an integrated HUD system to have an eye-box size that is substantially larger than the eye-box size of a HUD module. The resultant integrated HUD system volume is substantially volumetrically smaller than a HUD system that uses a single larger imager. Furthermore, the integrated HUD system can be comprised of a multiplicity of HUD modules to scale the eye-box size to match the intended application while maintaining a given desired overall HUD system brightness.
Abstract:
Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.
Abstract:
Methods for bonding semiconductor wafers requiring the transfer of electrical and optical signals between the bonded wafers and across the bonding interface by interfusing optical interconnects on one wafer with optical interconnects on a second wafer, interfusing electrical interconnects on one wafer with electrical interconnects on the second wafer, and interfusing a dielectric intermediary bonding layer on one wafer with the dielectric intermediary bonding layer on the second wafer to bond the wafers together with electrical interconnections and optical interconnections between the wafers. The methods are also applicable to the bonding of semiconductor wafers to provide a high density of electrical interconnects between wafers.
Abstract:
Methods for bonding semiconductor wafers requiring the transfer of electrical and optical signals between the bonded wafers and across the bonding interface. The methods for bonding of semiconductor wafers incorporate the formation of both electrical and optical interconnect vias within the wafer bonding interface to transfer electrical and optical signals between the bonded wafers. The electrical vias are formed across the bonding surface using multiplicity of metal posts each comprised of multiple layers of metal that are interfused across the bonding surface. The optical vias are formed across the bonding surface using multiplicity of optical waveguides each comprised of a dielectric material that interfuses across the bonding interface and having an index of refraction that is higher than the index of refraction of the dielectric intermediary bonding layer between the bonded wafers. The electrical and optical vias are interspersed across the bonding surface between the bonded wafers to enable uniform transfer of both electrical and optical signals between the bonded wafers.
Abstract:
A dual-mode augmented/virtual reality near-eye wearable display for use with a curved lens element. The lenses are provided with one or more transparent waveguide elements that are disposed within the thickness of the lenses. The waveguide elements are configured to couple display images directly from image sources such as emissive display imagers to an exit aperture or plurality of exit aperture sub-regions within a viewer's field of view. In a preferred embodiment, a plurality of image sources are disposed on the peripheral surface of the lenses whereby each image source has a dedicated input image aperture and exit aperture sub-region that are each “piecewise flat” and have matched areas and angles of divergence whereby a viewer is presented with the output of the plurality of image source images within the viewer's field of view.
Abstract:
Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.