Non-Telecentric Emissive Micro-Pixel Array Light Modulators and Methods of Fabrication Thereof

    公开(公告)号:US20170184776A1

    公开(公告)日:2017-06-29

    申请号:US15391583

    申请日:2016-12-27

    Abstract: Emissive micro-pixel spatial light modulators with non-telecentric emission are introduced. The individual light emission from each multi-color micro-scale emissive pixel is directionally modulated in a unique direction to enable application-specific non-telecentric emission pattern from the micro-pixel array of the emissive spatial light modulator. Design methods for directionally modulating the light emission of the individual micro-pixels using micro-pixel level optics are described. Monolithic wafer level optics methods for fabricating the micro-pixel level optics are also described. An emissive multi-color micro-pixel spatial light modulator with non-telecentric emission is used to exemplify the methods and possible applications of the present invention: ultra-compact image projector, minimal cross-talk 3D light field display, multi-view 2D display, and directionally modulated waveguide optics for see-through near-eye displays.

    White Light Emitting Structures with Controllable Emission Color Temperature
    26.
    发明申请
    White Light Emitting Structures with Controllable Emission Color Temperature 有权
    具有可控发射色温的白光发射结构

    公开(公告)号:US20160359084A1

    公开(公告)日:2016-12-08

    申请号:US15173511

    申请日:2016-06-03

    Abstract: Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.

    Abstract translation: 本文公开了用于掺入中间载体阻挡层的半导体发光器件(LED)的多层光学活性区域,所述中间载体阻挡层具有用于组合物和掺杂水平的设计参数,以提供对横跨载流子阻挡层的载流子注入分布的有效控制 活性区域以实现期望的器件注入特性。 本文中讨论的实施例的示例包括:在可见光范围内操作的全部覆盖RGB色域的多量子阱可变颜色LED,在可见光范围内工作的多量子阱可变颜色LED,具有扩展 超出标准RGB色域的色域,具有可变色温的多量子阱发光白光LED,以及具有均匀填充的有源层的多量子阱LED。

    Semiconductor wafer bonding incorporating electrical and optical interconnects
    27.
    发明授权
    Semiconductor wafer bonding incorporating electrical and optical interconnects 有权
    包含电和光互连的半导体晶片接合

    公开(公告)号:US09306116B2

    公开(公告)日:2016-04-05

    申请号:US14537627

    申请日:2014-11-10

    Abstract: Methods for bonding semiconductor wafers requiring the transfer of electrical and optical signals between the bonded wafers and across the bonding interface by interfusing optical interconnects on one wafer with optical interconnects on a second wafer, interfusing electrical interconnects on one wafer with electrical interconnects on the second wafer, and interfusing a dielectric intermediary bonding layer on one wafer with the dielectric intermediary bonding layer on the second wafer to bond the wafers together with electrical interconnections and optical interconnections between the wafers. The methods are also applicable to the bonding of semiconductor wafers to provide a high density of electrical interconnects between wafers.

    Abstract translation: 通过将一个晶片上的光学互连件与第二晶片上的光学互连件连接在一起,将在一个晶片上的电互连与第二晶片上的电互连相连接的半导体晶片的接合需要在接合的晶片之间和结合界面之间传送电和光信号的方法 并且将一个晶片上的电介质中间键合层与第二晶片上的电介质中间键合层进行接合,以将晶片与晶片之间的电互连和光学互连结合在一起。 这些方法也适用于半导体晶片的结合,以在晶片之间提供高密度的电互连。

    Semiconductor Wafer Bonding Incorporating Electrical and Optical Interconnects
    28.
    发明申请
    Semiconductor Wafer Bonding Incorporating Electrical and Optical Interconnects 有权
    半导体晶圆接合结合电气和光学互连

    公开(公告)号:US20150072450A1

    公开(公告)日:2015-03-12

    申请号:US14537627

    申请日:2014-11-10

    Abstract: Methods for bonding semiconductor wafers requiring the transfer of electrical and optical signals between the bonded wafers and across the bonding interface. The methods for bonding of semiconductor wafers incorporate the formation of both electrical and optical interconnect vias within the wafer bonding interface to transfer electrical and optical signals between the bonded wafers. The electrical vias are formed across the bonding surface using multiplicity of metal posts each comprised of multiple layers of metal that are interfused across the bonding surface. The optical vias are formed across the bonding surface using multiplicity of optical waveguides each comprised of a dielectric material that interfuses across the bonding interface and having an index of refraction that is higher than the index of refraction of the dielectric intermediary bonding layer between the bonded wafers. The electrical and optical vias are interspersed across the bonding surface between the bonded wafers to enable uniform transfer of both electrical and optical signals between the bonded wafers.

    Abstract translation: 用于接合半导体晶片的方法,其需要在接合的晶片之间并且跨接合界面传输电和光信号。 用于接合半导体晶片的方法包括在晶片接合界面内形成电和光互连通孔,以在接合的晶片之间转移电和光信号。 通过结合表面形成电通孔,使用多个金属柱,每个金属柱由跨接合表面的多层金属组成。 通过使用多个光波导形成光通孔,每个光波导由电介质材料构成,该电介质材料在接合界面之间相互连接并且具有高于接合晶片之间的电介质中间结合层的折射率的折射率 。 电通孔和光通孔穿过接合的晶片之间的结合表面,以使得能够在结合的晶片之间均匀地传递电信号和光信号。

Patent Agency Ranking