Abstract:
A phosphor includes a host crystal including Sr3MgSi2O8 crystal and SrMgSiO4 crystal and also includes Eu2+, or Eu2+ and Mn2+ as luminescent centers. Alternatively, a phosphor includes a host crystal including Sr3MgSi2O8 crystal and SrMgSiO4 and also includes Eu2+ as a luminescent center, the phosphor being free from Mn2+ as a luminescent center. A light-emitting device includes a phosphor layer containing the phosphor. A projector and a vehicle include the light-emitting device.
Abstract:
A light-emitting device includes: a light source that radiates primary light; and a first phosphor that absorbs the primary light and converts the primary light into first wavelength-converted light having a longer wavelength than the primary light, wherein the primary light is laser light, the first wavelength-converted light includes fluorescence based on electron energy transition of Cr3+, and a fluorescence spectrum of the first wavelength-converted light has a maximum fluorescence intensity value in region of a wavelength exceeding 710 nm.
Abstract:
Provided is a wavelength converting composite member including: a disk-shaped substrate; a first wavelength converting member provided on the substrate and containing a first phosphor that radiates fluorescence due to a parity-forbidden transition; and a second wavelength converting member provided on the substrate and containing a second phosphor that radiates fluorescence due to a parity-allowed transition. The first wavelength converting member and the second wavelength converting member are disposed adjacent to each other along the circumferential direction of the substrate. The first wavelength converting member and the second wavelength converting member are provided on the substrate in such a way that the position of the center of gravity of the entirety of the first wavelength converting member and the second wavelength converting member is located on the rotation axis of the substrate. A light emitting device is provided with the wavelength converting composite member.
Abstract:
A phosphor includes a crystal phase with a chemical composition (LuxY1-x)yM3-y-zCezβpγq. M denotes one or more elements selected from the group consisting of La, Sc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. β contains Si, which constitutes 90% or more by mole of β. γ contains N, which constitutes 90% or more by mole of γ. The variables x, y, z, p, and q satisfy 0
Abstract:
A phosphor comprises a crystal phase that has a chemical composition of (Y1-x-y,Cex,Lay)αSiβ-zAlzNγO, where the α satisfies 5.5≤α≤6.5, the β satisfies 9.5≤β≤12.5, the γ satisfies 17.5≤γ≤22.5, the x satisfies 0
Abstract:
A light-emitting apparatus includes a light-emitting device and an excitation light source. The light-emitting device includes a photoluminescent layer, a light-transmissive layer. At least one of the photoluminescent layer and the light-transmissive layer has a submicron structure having at least projections or recesses. Light emitted from the photoluminescent layer includes first light having a wavelength λa in air. The distance Dint between adjacent projections or recesses and the refractive index nwav-a of the photoluminescent layer for the first light satisfy λa/nwav-a
Abstract:
A light-emitting device includes a photoluminescent layer, a light-transmissive layer located on the photoluminescent layer, and a multilayer mirror layered together with the photoluminescent layer and the light-transmissive layer. At least one of the photoluminescent layer and the light-transmissive layer has a submicron structure. The submicron structure has at least projections or recesses arranged perpendicular to the thickness direction of the photoluminescent layer. The photoluminescent layer emits light including first light having a wavelength λa in air. The distance Dint between adjacent projections or recesses and the refractive index nwav-a of the photoluminescent layer for the first light satisfy λa/nwav-a
Abstract:
A wavelength conversion member includes a substrate, a dichroic mirror layer, an SiO2 layer, a ZnO layer, and a phosphor layer, which are sequentially stacked from the substrate. The dichroic mirror layer reflects at least part of light incident from the above. The phosphor layer includes a plurality of phosphors and ZnO between the phosphors.
Abstract:
A light-emitting device includes a photoluminescent layer that emits light containing first light, a light-transmissive layer located on or near the photoluminescent layer, and one or more reflectors. A submicron structure is defined on at least one of the photoluminescent layer and the light-transmissive layer. The one or more reflector are located outside the submicron structure. The submicron structure includes at least projections or recesses and satisfies the following relationship: λa/nwav-a
Abstract:
A fluorescent material according to an aspect of the present disclosure mainly comprises a compound represented by AB0.5-w-x-y-zCwEuxSmyLnzW0.5O3. A is one or more elements selected from the group consisting of alkaline earth metals and mainly contains Ca. B is one or more elements selected from the group consisting of divalent metals and mainly contains Mg. C is one or more elements selected from the group consisting of alkali metals and mainly contains Li, Na, or Li and Na. Ln is one or more elements selected from the group consisting of rare earth elements excluding Eu and Sm. w, x, y, and z meet the following conditions: 0.05≦w≦0.25, 0.05≦x+y≦0.25, 0.0≦y≦0.02, and w=x+y+z.
Abstract translation:根据本公开的一个方面的荧光材料主要包含由AB0.5-w-x-y-zCwEuxSmyLnzW0.5O3表示的化合物。 A是选自碱土金属和主要含有Ca的一种或多种元素。 B是选自二价金属和主要含有Mg的一种或多种元素。 C是选自碱金属中的一种或多种元素,主要含有Li,Na或Li和Na。 Ln是选自除了Eu和Sm之外的稀土元素的一种或多种元素。 w,x,y和z满足以下条件:0.05≦̸ w≦̸ 0.25,0.05≦̸ x + y≦̸ 0.25,0.0& nlE; y≦̸ 0.02,w = x + y + z。