摘要:
A method and system for using spatially modulated excitation/emission and relative movement between a particle (cell, molecule, aerosol, . . . ) and an excitation/emission pattern are provided. In at least one form, an interference pattern of the excitation light with submicron periodicity perpendicular to the particle flow is used. As the particle moves along the pattern, emission is modulated according to the speed of the particle and the periodicity of the stripe pattern. A single detector, which records the emission over a couple of stripes, can be used. The signal is recorded with a fast detector read-out in order to capture the “blinking” of the particles while they are moving through the excitation pattern. This concept enables light detection with high signal-to-noise ratio and high spatial resolution without the need of expensive and bulky optics.
摘要:
A method and system for using spatially modulated excitation/emission and relative movement between a particle (cell, molecule, aerosol, . . . ) and an excitation/emission pattern are provided. In at least one form, an interference pattern of the excitation light with submicron periodicity perpendicular to the particle flow is used. As the particle moves along the pattern, emission is modulated according to the speed of the particle and the periodicity of the stripe pattern. A single detector, which records the emission over a couple of stripes, can be used. The signal is recorded with a fast detector read-out in order to capture the “blinking” of the particles while they are moving through the excitation pattern. This concept enables light detection with high signal-to-noise ratio and high spatial resolution without the need of expensive and bulky optics.
摘要:
An implantable product includes an optical cavity structure with first and second parts, each of which can operate as an optical cavity. The first part includes a container with at least one opening through which bodily fluid can transfer between the container's interior and exterior when the product is implanted in a body. The second part includes a container that is closed and contains a reference fluid. The implantable product can also include one or both of a light source component and a photosensing component. Photosensed quantities from the first part's output light can be adjusted based on photosensed quantities from the second part's output light. Both parts can have their light interface surfaces aligned so that they both receive input light from a light source component and both provide output light to a photosensing component.
摘要:
Sensing results from moving objects, e.g. from photosensing emanating light or from impedance-based sensing, can indicate sensed time-varying waveforms with information about objects. For example, a sensed time-varying waveform can be compared with another waveform, such as a reference waveform produced by objects of a certain type, to obtain comparison results indicating motion-independent information about the object; time-scaling can adjust for displacement rate such as speed. Also, a modulation periodicity value can be obtained from a sensed time-varying waveform and used in obtaining information about an object; for example, a periodic modulation frequency can be used with a given time's chirp frequency to obtain phase information about an object's position. Or, where periodic modulation frequency indicates displacement rate, time scaling during comparison can use a scaling factor based on the frequency. Objects can move fluidically as in flow cytometry or through scanning movement, as in document scanning.
摘要:
An implantable product includes an optical cavity structure with first and second parts, each of which can operate as an optical cavity. The first part includes a container with at least one opening through which bodily fluid can transfer between the container's interior and exterior when the product is implanted in a body. The second part includes a container that is closed and contains a reference fluid. The implantable product can also include one or both of a light source component and a photosensing component. Photosensed quantities from the first part's output light can be adjusted based on photosensed quantities from the second part's output light. Both parts can have their light interface surfaces aligned so that they both receive input light from a light source component and both provide output light to a photosensing component.
摘要:
Sensing results from moving objects, e.g. from photosensing emanating light or from impedance-based sensing, can indicate sensed time-varying waveforms with information about objects. For example, a sensed time-varying waveform can be compared with another waveform, such as a reference waveform produced by objects of a certain type, to obtain comparison results indicating motion-independent information about the object; time-scaling can adjust for displacement rate such as speed. Also, a modulation periodicity value can be obtained from a sensed time-varying waveform and used in obtaining information about an object; for example, a periodic modulation frequency can be used with a given time's chirp frequency to obtain phase information about an object's position. Or, where periodic modulation frequency indicates displacement rate, time scaling during comparison can use a scaling factor based on the frequency. Objects can move fluidically as in flow cytometry or through scanning movement, as in document scanning.
摘要:
An implantable product such as an article, device, or system can include analyte and non-analyte containers in parts that can be operated as optical cavities. The product can also include fluidic components such as filter assemblies that control transfer of objects that affect or shift spectrum features or characteristics such as by shifting transmission mode peaks or reflection mode valleys, shifting phase, reducing maxima or contrast, or increasing intermediate intensity width such as full width half maximum (FWHM). Analyte, e.g. glucose molecules, can be predominantly included in a set of objects that transfer more rapidly into the analyte container than other objects, and can have a negligible or zero rate of transfer into the non-analyte container; objects that transfer more rapidly into the non-analyte container can include objects smaller than the analyte or molecules of a set of selected types, including, e.g., sodium chloride. Output light from the containers accordingly includes information about analyte.
摘要:
An improved method of analyzing target analytes in a sample is described. The method is based on creating an approximately homogeneous distribution of light in an anti-resonant guided optical waveguide to improve light-target interaction in a target-containing medium. The light-target interaction can be monitored by many different means to determine characteristics of the target analyte.
摘要:
An implantable product includes an optical cavity structure with first and second parts, each of which can operate as an optical cavity. The first part includes a container with at least one opening through which bodily fluid can transfer between the container's interior and exterior when the product is implanted in a body. The second part includes a container that is closed and contains a reference fluid. The implantable product can also include one or both of a light source component and a photosensing component. Photosensed quantities from the first part's output light can be adjusted based on photosensed quantities from the second part's output light. Both parts can have their light interface surfaces aligned so that they both receive input light from a light source component and both provide output light to a photosensing component.
摘要:
An embodiment is a fluidic channel to enhance light-target interaction. A first channel portion receives a first excitation light, an analyte flow, and a sheath flow. The analyte flow and the first excitation light are separated while in the first channel portion. The sheath flow flows on two sides or surrounds the analyte flow. A second channel portion has a first redirection structure to redirect the analyte flow by the sheath flow into the first excitation light at a first detection area.