Abstract:
A method of performing transmission from an access point (AP) in a wireless communication system provides transmission setting adjustment after sounding. In this method, stations associated with the AP and having transmission data can be identified. Transmission to those stations can be performed using a predetermined transmission setting. For a first transmission after a sounding, the predetermined transmission setting can be boosted. For any transmission other than the first transmission after the sounding, a current or adjusted transmission setting can be used based on a detected PER during transmission. An adjusted transmission setting can be an MCS rate, a user-level (SU-BF, 2U-MIMO, or 3U-MIMO), or an aggregated MAC protocol data unit (AMPDU) aggregation level. A single transmission setting or a combination of settings can be used. The method can be used with any transmission setting(s), including those mapped from the Signal to Interference and Noise Ratio (SINR).
Abstract:
An access point determines the buffered data for each station of a plurality of stations in a BSS and groups the stations with similar station characteristics. The transmission time to the stations in a group can be apportioned. The groups can be ordered based on station characteristics and a transmission history. A sounding for a group can be performed based on the order. The MU-MIMO transmission for the group can be performed until a first condition is met. If the first condition is met, then the sounding and the MU-MIMO transmission for a next group can be performed, according to the order, until a second condition is met. The first condition can include an apportioned transmission time having expired and/or the buffers for the group being flushed. The second condition can include new data having been buffered by the AP and/or all buffered data having been transmitted.
Abstract:
In a multiple-input, multiple-output (MIMO) system, a wireless node's receive chain demodulation function is enhanced to include phase tracking. VHT Long Training Fields (LTFs) embedded in a frame preamble are used for phase tracking. Single stream pilot tones are added during transmission of VHT-LTFs. A receiver estimates the channel using the pilot tones in a first set of LTFs. A second set of LTFs are used to estimate the phase of the pilot tones using the estimated channel. The phase estimation is continuously applied to other received data tones throughout the VHT-LTFs of data symbols. Phase errors due to PLL mismatches and phase noise are reduced at reception, leading to better signal to noise ratio for different levels of drift and frequency offset. Further, MIMO channel estimation is more accurate, improving the overall wireless network when the accurate MIMO channel estimation data participates in calibration and handshake between wireless nodes.
Abstract:
A wireless device may be configured to operate in one of two modes where each mode uses a different channel list to perform operations in accordance with the IEEE 802.11 standard. In a first mode, the wireless device operates as an access point that sets up channels using one channel list in order to facilitate communications within a basic service set (BSS). In a second mode, the wireless device uses a second channel list to operate as a station and scan for a BSS. The first channel list contains a subset of the channels contained in the second channel list. The channels in each respective channel list may be reconfigured to adapt to changes in the configuration of a BSS and the devices communicating therein.
Abstract:
Methods, systems, and devices for wireless communication are described. A ranging message procedure may employ protection by modifying a cyclic prefix of the ranging message to prevent an attacking device from transmitting a time-advanced copy of the cyclic prefix during symbol of the copied signal. For example, the modified cyclic prefix may include pseudo random training sequences or a set of zero-value symbols. The receiving device may determine a channel estimation technique that accounts for the modified cyclic prefix. The wireless devices performing the ranging measurement process may determine a modulation and coding scheme (MCS) for the ranging message. The wireless devices may negotiate an MCS value and cyclic prefix configuration for the ranging measurement process. In some examples, the ranging message be encoded by applying a sequence of phase rotations or amplitude variations to the base sequence used to generate the sounding training signal.
Abstract:
A method for sending data includes receiving, at a first station of a plurality of stations, a trigger frame from an access point of a wireless network. The method also includes determining a downlink channel estimation based on the trigger frame and sending the downlink channel estimation to the access point. The method further includes receiving uplink channel data from the access point in response to sending the downlink channel estimation. The method also includes sending data to the access point based on the uplink channel data.
Abstract:
Methods, systems, and devices for wireless communication are described. Devices in a wireless network may be grouped into a basic service set (BSS), which may enable coordination of communications within the network. A BSS may have an associated coverage area. Some devices may be operable to communicate using extended range (ER) transmissions, which may increase the size of the coverage area associated with the BSS. In some cases, an access point (AP) may support multiple BSSs with equivalent security profiles. A first BSS may exclusively support ER transmissions, while a second BSS may support non-ER transmissions. Techniques are described for a wireless device to discover one or more of the BSSs associated with a given AP, associate with at least one of the discovered BSSs, and in some cases switch between the BSSs with equivalent security profiles. The discussed techniques may provide more efficient communications in the wireless network.
Abstract:
A ranging operation between a first wireless device and a second wireless may be performed by: sending, to the second wireless device, a data frame including a request for the second wireless device to report its actual SIFS duration to the first wireless device; determining a time of departure (TOD) of the data frame; receiving, from the second wireless device, a response frame including SIFS information indicative of the actual SIFS duration of the second wireless device; determining a time of arrival (TOA) of the response frame; and determining a round trip time (RTT) of the data frame and the response frame using the TOD of the data frame, the TOA of the response frame, and the actual SIFS duration of the second wireless device.
Abstract:
This disclosure provides systems, methods and apparatuses for detecting a presence of long training fields (LTFs) in packet extensions of high-efficiency (HE) packets. An apparatus requests a length of packet extensions to be used for a ranging operation. The apparatus receives an HE packet including a packet extension containing a selected number of LTFs based at least in part on the requested packet extension length. The apparatus performs the ranging operation based on a determination that the packet extension contains LTFs. In some aspects, the apparatus detects a presence of LTFs in the packet extension based on a bit provided in the HE packet. In some other aspects, the apparatus detects a presence of LTFs in the packet extension by extracting sequences from the packet extension.
Abstract:
Disclosed herein are techniques for range measurement between one or more wireless stations (STAs) and a first access point (AP). In various embodiments, the first AP may synchronize a clock of the first AP with clocks of one or more synchronized APs. The first AP may perform a synchronization session with the one or more STAs. The first AP may also transmit one or more Broadcast time-of-departure (TOD) frames to the one or more STAs. Each of the one or more Broadcast TOD frames may include a time of departure of a Broadcast TOD frame from the first AP. A second AP and a third AP of the one or more synchronized APs may also transmit one or more Broadcast TOD frames to the one or more STAs for range and/or position determination.