Abstract:
Described are memory modules that include address-buffer components and data-buffer components that together support wide- and narrow-data modes. The address-buffer component manages communication between a memory controller and two sets of memory components. In the wide-data mode, the address-buffer enables memory components in each set and instructs the data-buffer components to communicate full-width read and write data by combining data from or to from both sets for each memory access. In the narrow-data mode, the address-buffer enables memory components in just one of the two sets and instructs the data-buffer components to half-width read and write data with one set per memory access.
Abstract:
The embodiments described herein describe technologies for memory systems. One implementation of a memory system includes a motherboard substrate with multiple module sockets, at least one of which is populated with a memory module. A first set of data lines is disposed on the motherboard substrate and coupled to the module sockets. The first set of data lines includes a first subset of point-to-point data lines coupled between a memory controller and a first socket and a second subset of point-to-point data lines coupled between the memory controller and a second socket. A second set of data lines is disposed on the motherboard substrate and coupled between the first socket and the second socket. The first and second sets of data lines can make up a memory channel.
Abstract:
A semiconductor memory system includes a first semiconductor memory die and a second semiconductor memory die. The first semiconductor memory die includes a primary data interface to receive an input data stream during write operations and to deserialize the input data stream into a first plurality of data streams, and also includes a secondary data interface, coupled to the primary data interface, to transmit the first plurality of data streams. The second semiconductor memory die includes a secondary data interface, coupled to the secondary data interface of the first semiconductor memory die, to receive the first plurality of data streams.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
Abstract:
A memory module comprises a data interface including a plurality of data lines and a plurality of configurable switches coupled between the data interface and a data path to one or more memories. The effective width of the memory module can be configured by enabling or disabling different subsets of the configurable switches. The configurable switches may be controlled by manual switches, by a buffer on the memory module, by an external memory controller, or by the memories on the memory module.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
Abstract:
A memory device (100) includes an extra column (114) of repair memory tiles. These repair memory tiles are accessed at the same time, and in the same manner as the main array of memory tiles. The output of the repair column is substituted for the output of a column of the main array (112). The main array column that is substituted is determined by tags (121) stored externally to the memory device. The external tags are queried with a partial address of the access. If the address of the access corresponds to an address in the external tags, the tag information is supplied to the memory device. The tag information determines which column in the main array is replaced by the output of the repair column. Since each column of the main array supplies one bit during the access, the repair column enables cell-by-cell replacement of main array cells.
Abstract:
A memory device is disclosed that includes a row of storage locations to store a data word, and a spare row element. The data word is encoded via an error code for generating error information for correcting X bit errors or detecting Y bit errors, where Y is greater than X. The spare row element has substitute storage locations. The logic is responsive to detected errors to (1) enable correction of a data word based on the error information where there are no more than X bit errors, and (2) substitute the spare row element for a portion of the row where there are at least Y bit errors in the data word.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.