Abstract:
To improve a semiconductor device having a nonvolatile memory. A first MISFET, a second MISFET, and a memory cell are formed, and a stopper film made of a silicon oxide film is formed thereover. Then, over the stopper film, a stress application film made of a silicon nitride film is formed, and the stress application film over the second MISFET and the memory cell is removed. Thereafter, heat treatment is performed to apply a stress to the first MISFET. Thus, a SMT is not applied to each of elements, but is applied selectively. This can reduce the degree of degradation of the second MISFET due to H (hydrogen) in the silicon nitride film forming the stress application film. This can also reduce the degree of degradation of the characteristics of the memory cell due to the H (hydrogen) in the silicon nitride film forming the stress application film.
Abstract:
The memory cell includes a gate insulating film, a control gate electrode, a cap insulating film, a cap layer, another gate insulating film, and a memory gate electrode. A laminated capacitive element includes a capacitive electrode which is constituted by a sub-electrode and another sub-electrode formed of mesa portions (protruding portions) disposed on the sub-electrode at a predetermined interval and each having an upper surface and side surfaces, a capacitive insulating film which is formed along an upper surface of the sub-electrode and the upper surface and the side surfaces of the another sub-electrode, and another capacitive electrode which is formed on the capacitive insulating film. Further, the control gate electrode and the sub-electrode are made of a conductor film, the cap layer and the another sub-electrode are made of other conductor film, and the memory gate electrode and the another capacitive electrode are made of another conductor film.
Abstract:
In a semiconductor device including a nonvolatile memory, a novel stacked capacitive element is provided. The semiconductor device includes the stacked capacitive element including a first capacitive electrode made of an n-type well region formed in a semiconductor substrate, a second capacitive electrode formed so as to overlap the first capacitive electrode via a first capacitive insulating film, a third capacitive electrode formed so as to overlap the second capacitive electrode via a second capacitive insulating film, and a fourth capacitive electrode formed so as to overlap the third capacitive electrode via a third capacitive insulating film. To the first and third capacitive electrodes, a first potential is applied and, to the second and fourth capacitive electrodes, a second potential different from the first potential is applied.
Abstract:
In method for manufacturing a semiconductor device including a nonvolatile memory, a new method for manufacturing a capacitor element is provided. After working a control gate electrode, a gate insulation film including an electric charge accumulation section, and a memory gate electrode of a memory cell, in order to protect the memory cell, a p-type well of a MISFET is formed in a state the control gate electrode, the gate insulation film, and the memory gate electrode are covered by an insulation film. Also, this insulation film is used as a capacitor insulation film of a laminated type capacitor element.
Abstract:
Improvements are achieved in the properties of a semiconductor device including a MISFET and a nonvolatile memory. Over a gate electrode included in the MISFET and a control gate electrode and a memory gate electrode each included in a memory cell, a stress application film is formed of a silicon nitride film. Then, by removing the silicon nitride film from over the control gate electrode and the memory gate electrode, an opening is formed over the control gate electrode and the memory gate electrode. Then, in a state where the opening is formed in the silicon nitride film, heat treatment is performed to apply a stress to the MISFET. By thus removing the stress application film (silicon nitride film) from over the memory cell, it is possible to avoid the degradation of the properties of the memory cell due to H (hydrogen) in the silicon nitride film.
Abstract:
A semiconductor substrate includes scribe and product regions, with grooves formed in the scribe region. The grooves are embedded with an insulating film to provide an isolation region, and an active region, including semiconductor elements, is formed in the product region. Dummy patterns are formed in the scribe region, which include a first dummy pattern and second dummy patterns for preventing dishing of the insulating film. The second dummy patterns are surrounded and defined by the isolation region. A target pattern for optical pattern recognition is arranged over the first dummy pattern, and includes a first conductive film. A plane area of the first dummy pattern is larger than a plane area of each of the second dummy patterns, and the first dummy pattern and the second dummy patterns are arranged in order from an edge of the semiconductor substrate toward the product region.
Abstract:
To improve a semiconductor device having a nonvolatile memory. a first MISFET, a second MISFET, and a memory cell are formed, and a stopper film made of a silicon oxide film is formed thereover. Then, over the stopper film, a stress application film made of a silicon nitride film is formed, and the stress application film over the second MISFET and the memory cell is removed. Thereafter, heat treatment is performed to apply a stress to the first MISFET. Thus, a SMT is not applied to each of elements, but is applied selectively. This can reduce the degree of degradation of the second MISFET due to H (hydrogen) in the silicon nitride film forming the stress application film. This can also reduce the degree of degradation of the characteristics of the memory cell due to the H (hydrogen) in the silicon nitride film forming the stress application film.
Abstract:
The present invention improves the performance of a semiconductor device. In a manufacturing method of a semiconductor device, sacrificial oxide films are formed over the side surface of a control gate electrode formed in a memory cell region, the surface of a cap insulating film formed in the memory cell region, and the surface of the part, which remains in a peripheral circuit region, of an insulating film. The step of forming the sacrificial oxide films includes the steps of: oxidizing the side surface of the control gate electrode by a thermal oxidation method; and oxidizing the surface of the cap insulating film and the surface of the part, which remains in the peripheral circuit region, of the insulating film by an ISSG oxidation method.
Abstract:
The performances of a semiconductor device are improved. A semiconductor device has a first electrode and a dummy electrode formed apart from each other over a semiconductor substrate, a second electrode formed between the first electrode and the dummy electrode, at the circumferential side surface of the first electrode, and at the circumferential side surface of the dummy electrode, and a capacitive insulation film formed between the first electrode and the second electrode. The first electrode, the second electrode, and the capacitive insulation film form a capacitive element. Further, the semiconductor device has a first plug penetrating through the interlayer insulation film, and electrically coupled with the first electrode, and a second plug penetrating through the interlayer insulation film, and electrically coupled with the portion of the second electrode formed at the side surface of the dummy electrode opposite to the first electrode side.
Abstract:
An improvement is achieved in the manufacturing yield of a semiconductor device including a plurality of field effect transistors having different characteristics over the same substrate. By combining anisotropic dry etching with isotropic wet etching or isotropic dry etching, three types of sidewalls having different sidewall lengths are formed. By reducing the number of anisotropic dry etching steps, in a third n-type MISFET region and a third p-type MISFET region where layout densities are high, it is possible to prevent a semiconductor substrate from being partially cut between n-type gate electrodes adjacent to each other, between the n-type gate electrode and a p-type gate electrode adjacent to each other, and the p-type gate electrodes adjacent to each other.