Abstract:
In one embodiment, a light emitting device, comprises: a lighting element located in a housing, wherein the housing is formed from a plastic composition comprising: a polycarbonate formed from reacting, in the presence of a transesterification catalyst, a diaryl carbonate ester and a bisphenol A, wherein the bisphenol A has a sulfur concentration of 1 ppm to 15 ppm, based upon a weight of the bisphenol A; and a conversion material wherein the conversion material comprises an inorganic material that converts radiation of a certain wavelength and re-emits of a different wavelength; wherein after the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10−4 seconds when the excitation source is removed.
Abstract:
A polycarbonate containing composition comprising a peak melt viscosity of at least 8,000 poise when measured using a parallel plate melt rheology test at a heating rate of 10° C./min at a temperature of between about 350° C. to about 450° C., and wherein a molded article of the composition has a UL 94 V0 rating at a thickness of 1.0 mm, 1.5 mm, 2.0 mm, or between 1.0 mm and 2.0 mm is disclosed.
Abstract:
A polycarbonate containing composition comprising a peak melt viscosity of at least 8,000 poise when measured using a parallel plate melt rheology test at a heating rate of 10° C./min at a temperature of between about 350° C. to about 450° C., and wherein a molded article of the composition has a UL 94 VO rating at a thickness of 1.0 mm, 1.5 mm, 2.0 mm, or between 1.0 mm and 2.0 mm is disclosed.
Abstract:
Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.