Abstract:
A display apparatus including a directional backlight unit and a method of assembling the display apparatus are disclosed. The display apparatus includes an auxiliary structure coupled to an input coupler and a switch panel module.
Abstract:
A curved backlight unit is provided. The backlight unit includes a curved light guide plate having a curvature, a first light source configured to provide a first illumination light to a first surface of the curved light guide plate, an array of a plurality of different grating elements disposed on a second surface of the curved light guide plate and configured to allow the first illumination light to exit the curved light guide plate from the second surface, and a second light source configured to provide a second illumination light to a third surface facing the second surface of the curved light guide plate. The curved light guide plate includes a first area configured to allow the second illumination light to exist at a first intensity and a second area configured to allow the second illumination light to exist at a second intensity that is less than the first intensity
Abstract:
A flexible bimodal sensor includes a gate electrode; a flexible substrate; a source electrode disposed on the flexible substrate; a drain electrode disposed on the flexible substrate apart from the source electrode; a channel layer disposed on the source electrode and the drain electrode and a portion of the flexible substrate between the source electrode and the drain electrode; and a gate insulating layer comprising a plurality of protrusions, the gate insulating layer being disposed on the channel layer and arranged between the channel layer and the gate electrode. The drain electrode outputs a current signal simultaneously indicating a temperature value and a pressure value sensed by the flexible bimodal sensor.
Abstract:
A backlight unit including an input coupler, a holographic display apparatus including the backlight unit, and a method of manufacturing the input coupler are provided. The backlight unit includes the input coupler configured to cause light incident on a light incident surface of a light guide plate to travel into the light guide plate, the input coupler has a binary grating structure in which a plurality of barriers are arranged parallel to one another at a constant grating period, and the plurality of barriers are tilted from the light incident on the light incident surface.
Abstract:
Provided are a light guide plate, a backlight unit, and a holographic display apparatus including the backlight unit. The backlight unit includes a light source and a light guide plate including two or more layers configured to guide light from the light source, wherein the two or more layers are configured to control a ratio of light transmitted therethrough to light reflected thereby.
Abstract:
A directional backlight unit and a three-dimensional (3D) image display device including the directional backlight unit are provided. The directional backlight unit includes: a light guide plate, a light source configured to irradiate an incident surface of the light guide plate with a plurality of color lights, and a grating that includes a sub-grating configured to react to all of the plurality of color lights. The directional backlight unit may further include a color filter that corresponds to a plurality of color lights emitted from each sub-grating.
Abstract:
A directional backlight unit is provided, including a light guide plate, a light source, and a grating that is formed on a light-emitting surface of the light guide plate. The grating is configured such that an intensity of one ray of light, of the light irradiated by the light source and diffracted and emitted by the grating, is greater than a sum of intensities of all other rays of light, of the light irradiated by the light source and diffracted and emitted by the grating.
Abstract:
A method of manufacturing a master mold includes forming a plurality of replica resin layers using a mold; forming a replica template by bonding the plurality of replica resin layers on a template; forming a replica mold layer having a pattern corresponding to a pattern of the plurality of replica resin layers using the replica template; forming a flexible stamp having a pattern formed on a surface thereof using the replica mold layer; transferring the pattern formed on the surface of the flexible stamp to a mold resin; and forming a large area master mold by etching a surface of a substrate based on a pattern shape of the mold resin.
Abstract:
A liquid crystal display includes a light source unit, a first substrate provided on the light source unit, an electrode layer provided on the first substrate, a second substrate separate from the electrode layer, a polarizing plate provided on a surface of the second substrate, a liquid crystal layer disposed between the electrode layer and the second substrate, a reflecting unit provided on a surface of the first substrate; and a wire grid polarizer provided on an opposite surface of the first substrate.
Abstract:
A method of designing a semiconductor chip includes: acquiring first data including information about arrangement of a plurality of cells on the semiconductor chip; acquiring second data including information about routing between the plurality of cells and power and signal lines; and outputting a verification result by detecting an error of arrangement of the plurality of cells based on matching of the first data and the second data.