Abstract:
Provided is a semiconductor device having favorable reliability. A manufacturing method of a semiconductor device comprising the steps of: forming a first oxide semiconductor having an island shape; forming a first conductor and a second conductor over the first oxide semiconductor; forming an oxide semiconductor film over the first oxide semiconductor, the first conductor, and the second conductor; forming a first insulating film over the oxide semiconductor film; forming a conductive film over the first insulating film; removing part of the first insulating film and part of the conductive film to form a first insulator and a third conductor; forming a second insulating film covering the first insulator and the third conductor; removing part of the oxide semiconductor film and part of the second insulating film to form a second oxide semiconductor and a second insulator and to expose a side surface of the first oxide semiconductor; forming a third insulator in contact with the side surface of the first oxide semiconductor and with a side surface of the second oxide semiconductor; forming a fourth insulator in contact with the third insulator; and performing a microwave-excited plasma treatment to the third insulator and the fourth insulator.
Abstract:
Disclosed is a power storage element including a positive electrode current collector layer and a negative electrode current collector layer which are arranged on the same plane and can be formed through a simple process. The power storage element further includes a positive electrode active material layer on the positive electrode current collector layer; a negative electrode active material layer on the negative electrode current collector layer; and a solid electrolyte layer in contact with at least the positive electrode active material layer and the negative electrode active material layer. The positive electrode active material layer and the negative electrode active material layer are formed by oxidation treatment.
Abstract:
A lithium-ion storage battery with a high capacity retention rate is provided. A lithium-ion storage battery with a longer lifetime is provided. A method for fabricating a lithium-ion storage battery with a high capacity retention rate is provided. A lithium-ion storage battery includes a positive electrode, a negative electrode, and an electrolyte solution. A coating film which includes lithium oxide is provided over the surface of the negative electrode. The electrolyte solution may include LiTFSA or LiFSA. The method for fabricating a lithium-ion storage battery includes a first step of enclosing a positive electrode, a negative electrode, and an electrolyte solution in an exterior body and a second step of keeping the exterior body including the positive electrode, the negative electrode, and the electrolyte solution at temperature higher than or equal to 70 degrees Celsius for longer than or equal to 24 hours after the first step.
Abstract:
Disclosed is a power storage element including a positive electrode current collector layer and a negative electrode current collector layer which are arranged on the same plane and can be formed through a simple process. The power storage element further includes a positive electrode active material layer on the positive electrode current collector layer; a negative electrode active material layer on the negative electrode current collector layer; and a solid electrolyte layer in contact with at least the positive electrode active material layer and the negative electrode active material layer. The positive electrode active material layer and the negative electrode active material layer are formed by oxidation treatment.
Abstract:
The cycle performance of a lithium-ion secondary battery or a lithium-ion capacitor can be obtained by minimizing the decomposition reaction of an electrolytic solution, etc. in the repeated charge and discharge cycles of the lithium-ion secondary battery or the lithium-ion capacitor. An electrode includes a current collector and an active material layer over the current collector. The active material layer includes active material particles, a conductive additive, a binder, and a film containing silicon oxide as its main component. The surface of one of the active material particles includes at least one of a region in contact with the surface of another active material particle, a region in contact with the conductive additive, and a region in contact with the binder. The surface of the active material particle except these regions is at least partly in contact with the film containing silicon oxide as its main component.
Abstract:
A secondary battery that can inhibit degradation of an electrode is provided. A flexible secondary battery is provided. A flexible secondary battery includes a positive electrode, a negative electrode, and an exterior body surrounding the positive electrode and the negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer provided over the positive electrode current collector. The negative electrode includes a negative electrode current collector and a negative electrode active material layer provided over the negative electrode current collector. One or both of the positive electrode current collector and the negative electrode current collector have rubber elasticity.
Abstract:
To provide a battery in which electrode distortion is suppressed in connecting an electrode terminal and a current collector exposed portion. The battery includes an electrode, an exterior body surrounding the electrode, and a lead extending from the inside to the outside of the exterior body. The electrode includes a current collector and an active material layer. The electrode includes a first region where the active material layer is provided over the current collector, and a second region where the current collector is exposed. The second region of the electrode includes a third region where the current collector is folded. The lead is connected to the electrode in the third region.
Abstract:
A lithium ion battery having an excellent discharge characteristics even at temperatures below freezing is to be provided. The lithium ion battery includes a positive electrode including a positive electrode active material, an electrolyte, and a negative electrode including a negative electrode active material that is a carbon material. In the lithium ion battery, a value of discharge capacity obtained by, after performing constant current charging at a charge rate of 0.1 C (where 1 C=200 mA/g) until a voltage reaches 4.5 V and then performing constant voltage charging at 4.5 V until a current value achieves 0.01 C in an environment of 25° C., performing constant current discharging at a discharge rate of 0.1 C until a voltage reaches 2.5 V in an environment of −40° C. is higher than or equal to 50% of a value of discharge capacity obtained by, after performing constant current charging at a charge rate of 0.1 C (where 1 C=200 mA/g) until a voltage reaches 4.5 V and then performing constant voltage charging at 4.5 V until a current value achieves 0.01 C in an environment of 25° C., performing constant current discharging at a discharge rate of 0.1 C until a voltage reaches 2.5V in an environment of 25° C.
Abstract:
A lithium-ion secondary battery with a high capacity and excellent charge and discharge cycle performance is provided. A secondary battery with a high capacity is provided. A secondary battery whose shape hardly changes in a vacuum is provided. A bendable secondary battery is provided. The secondary battery contains a positive electrode active material and an electrolyte; the positive electrode active material is lithium cobalt oxide to which magnesium is added; magnesium has a gradient in which a concentration increases from an inner portion toward a surface of the positive electrode active material; the electrolyte contains an imidazolium salt; and a temperature range where the secondary battery can operate is higher than or equal to −20° C. and lower than or equal to 100° C.
Abstract:
A secondary battery has a high capacity and little deterioration can be provided. Alternatively, a novel power storage device is provided. The secondary battery includes a positive electrode and a negative electrode. The negative electrode includes a first active material, a second active material, and a graphene compound. At least part of a surface of the first active material includes a region covered with the second active material. A surface of the second active material and at least part of the surface of the first active material each include a region covered with the graphene compound. The first active material includes graphite. The second active material includes silicon. The capacity of the positive electrode is greater than or equal to 50% and less than 100% of the capacity of the negative electrode.