-
公开(公告)号:US11703864B2
公开(公告)日:2023-07-18
申请号:US17174583
申请日:2021-02-12
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G06T17/00 , G05D1/00 , G05B17/02 , B64C39/02 , B64D47/08 , B64D31/06 , G05D1/10 , G06T7/55 , G06T7/73 , G05B13/02 , G06T19/20 , H04N23/60 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64 , B64U10/13 , B64U101/30
CPC classification number: G05D1/0094 , B64C39/024 , B64D31/06 , B64D47/08 , G05B13/0265 , G05B17/02 , G05D1/0088 , G05D1/101 , G06T7/55 , G06T7/74 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/64 , H04N23/695 , H04N23/90 , B64U10/13 , B64U2101/30 , G06T2207/10032 , G06T2207/20221 , G06T2219/2004
Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine, based on a three-dimensional (3D) model including a plurality of points corresponding to a scan target, a scan plan for scanning at least a portion of the scan target. For instance, the scan plan may include a plurality of poses for the UAV to assume to capture images of the scan target. The UAV may capture with one or more image sensors, one or more images of the scan target from one or more poses of the plurality of poses. Further, the UAV may determine an update to the 3D model based at least in part on the one or more images. Additionally, the UAV may update the scan plan based at least in part on the update to the 3D model.
-
公开(公告)号:US11573544B2
公开(公告)日:2023-02-07
申请号:US17174585
申请日:2021-02-12
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: B64C39/02 , B64D47/08 , B64D31/06 , G06T17/00 , G06T19/20 , G06T7/55 , G05D1/00 , H04N5/00 , G05B17/02 , G05D1/10 , H04N5/232 , H04N5/247 , G06T7/73 , G05B13/02
Abstract: In some examples, an unmanned aerial vehicle (UAV) employs one or more image sensors to capture images of a scan target and may use distance information from the images for determining respective locations in three-dimensional (3D) space of a plurality of points of a 3D model representative of a surface of the scan target. The UAV may compare a first image with a second image to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. Further, based at least on the difference, the UAV may determine, while the UAV is in flight, an update to the 3D model including at least one of an updated location of at least one point in the 3D model, or a location of a new point in the 3D model.
-
公开(公告)号:US20220415185A1
公开(公告)日:2022-12-29
申请号:US17890887
申请日:2022-08-18
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: G08G5/00 , G06F3/04845 , G06F3/04817 , G06T17/05 , G06T19/00 , G06F3/04847 , B64C39/02 , B64D47/08 , G05D1/10 , G05D1/00 , G08G5/04 , G01S13/89 , G01S17/89 , H04N5/272 , G06T17/10 , G06V20/13 , G06V20/10
Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
-
公开(公告)号:US20220406193A1
公开(公告)日:2022-12-22
申请号:US17890889
申请日:2022-08-18
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: G08G5/00 , G06F3/04845 , G06F3/04817 , G06T17/05 , G06T19/00 , G06F3/04847 , B64C39/02 , B64D47/08 , G05D1/10 , G05D1/00 , G08G5/04 , G01S13/89 , G01S17/89 , H04N5/272 , G06T17/10 , G06V20/13 , G06V20/10
Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof
-
公开(公告)号:US20220148445A1
公开(公告)日:2022-05-12
申请号:US17508624
申请日:2021-10-22
Applicant: Skydio, Inc.
Inventor: Mark Patrick Bauer , Brian Richman , Alan Jay Poole , Bernard J. Michini , Jonathan Anders Lovegren , Brett Michael Bethke , Hui Li
IPC: G08G5/00 , H04N7/18 , B64C39/02 , G05D1/00 , H04N5/232 , G06V20/58 , G06V20/10 , G08G5/02 , B64D47/08 , G05D1/06 , G05D1/04 , G06Q10/06 , G06Q10/10 , G06Q50/16 , G06T17/05 , G06K9/62 , H04N5/445 , G01C21/20 , G06F3/04815
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
-
公开(公告)号:US20210125406A1
公开(公告)日:2021-04-29
申请号:US16896066
申请日:2020-06-08
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
-
公开(公告)号:US12189389B2
公开(公告)日:2025-01-07
申请号:US18520072
申请日:2023-11-27
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G05D1/69 , B64C39/02 , B64D31/06 , B64D47/08 , G05B13/02 , G05B17/02 , G05D1/00 , G05D1/227 , G05D1/689 , G06T7/55 , G06T7/73 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/60 , H04N23/695 , H04N23/90 , B64U10/13 , B64U101/30
Abstract: In some examples, one or more processors of an unmanned aerial vehicle (UAV), control a propulsion mechanism of the UAV to cause the UAV to navigate to a plurality of positions in relation to a scan target. Using one or more image sensors of the UAV, a first image of the scan target is captured from a first position of the plurality of positions, and a second image of the scan target is captured from a second position of the plurality of positions. A disparity is determined between the first image captured at the first position and the second image captured at the second position. A three-dimensional model corresponding to the scan target is determined based in part on the disparity determined between the first image and the second image.
-
公开(公告)号:US12097957B2
公开(公告)日:2024-09-24
申请号:US17890884
申请日:2022-08-18
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: B64C39/00 , B64C39/02 , B64D47/08 , G01S13/89 , G01S17/89 , G05D1/00 , G05D1/223 , G05D1/224 , G05D1/606 , G06F3/04817 , G06F3/04845 , G06F3/04847 , G06T17/05 , G06T17/10 , G06T19/00 , G06V20/10 , G06V20/13 , G06V20/17 , G06V20/64 , G08G5/00 , G08G5/04 , H04N5/272 , B64U10/13 , B64U101/30 , H04N13/204
CPC classification number: B64C39/024 , B64D47/08 , G01S13/89 , G01S17/89 , G05D1/0016 , G05D1/0038 , G05D1/106 , G05D1/223 , G05D1/224 , G05D1/606 , G06F3/04817 , G06F3/04845 , G06F3/04847 , G06T17/05 , G06T17/10 , G06T19/006 , G06V20/13 , G06V20/17 , G06V20/176 , G06V20/647 , G08G5/003 , G08G5/04 , H04N5/272 , B64U10/13 , B64U2101/30 , B64U2201/00 , B64U2201/20 , H04N13/204
Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
-
公开(公告)号:US11952116B2
公开(公告)日:2024-04-09
申请号:US17890889
申请日:2022-08-18
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: B64C39/02 , B64D47/08 , G01S13/89 , G01S17/89 , G05D1/00 , G06F3/04817 , G06F3/04845 , G06F3/04847 , G06T17/05 , G06T17/10 , G06T19/00 , G06V20/10 , G06V20/13 , G06V20/17 , G06V20/64 , G08G5/00 , G08G5/04 , H04N5/272 , B64U10/13 , B64U101/30 , H04N13/204
CPC classification number: B64C39/024 , B64D47/08 , G01S13/89 , G01S17/89 , G05D1/0016 , G05D1/0038 , G05D1/106 , G06F3/04817 , G06F3/04845 , G06F3/04847 , G06T17/05 , G06T17/10 , G06T19/006 , G06V20/13 , G06V20/17 , G06V20/176 , G06V20/647 , G08G5/003 , G08G5/04 , H04N5/272 , B64U10/13 , B64U2101/30 , B64U2201/00 , B64U2201/20 , G05D2201/0207 , H04N13/204
Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
-
公开(公告)号:US11940795B2
公开(公告)日:2024-03-26
申请号:US18099571
申请日:2023-01-20
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G01C1/00 , B64C39/02 , B64D31/06 , B64D47/08 , G05B13/02 , G05B17/02 , G05D1/00 , G06T7/55 , G06T7/73 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/60 , H04N23/695 , H04N23/90 , B64U10/13 , B64U101/30
CPC classification number: G05D1/0094 , B64C39/024 , B64D31/06 , B64D47/08 , G05B13/0265 , G05B17/02 , G05D1/0088 , G05D1/101 , G06T7/55 , G06T7/74 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/64 , H04N23/695 , H04N23/90 , B64U10/13 , B64U2101/30 , G06T2207/10032 , G06T2207/20221 , G06T2219/2004
Abstract: In some examples, an unmanned aerial vehicle (UAV) may include one or more processors configured to capture, with one or more image sensors, and while the UAV is in flight, a plurality of images of a target. The one or more processors may compare a first image of the plurality of images with a second image of the plurality of images to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. In addition, the one or more processors may determine, based at least on the difference, and while the UAV is in flight, an update to a three-dimensional model of the target.
-
-
-
-
-
-
-
-
-