Abstract:
According to some aspects, a layered structure includes a memory layer, a magnetization-fixed layer, and a tunnel insulating layer. The memory layer has magnetization perpendicular to a film face in which a direction of the magnetization is configured to be changed according to information by applying a current in a lamination direction of the layered structure. The magnetization-fixed layer has magnetization parallel or antiparallel to the magnetization direction of the memory layer and comprises a laminated ferripinned structure including a plurality of ferromagnetic layers and one or more non-magnetic layers, and includes a layer comprising an antiferromagnetic material formed on a first ferromagnetic layer of the plurality of ferromagnetic layers and situated between the first ferromagnetic layer and the non-magnetic layer. The tunnel insulating layer is located between the memory layer and the magnetization-fixed layer.
Abstract:
A memory device includes multiple bit lines extending in a first direction, multiple word lines extending in a second direction crossing the first direction, and multiple memory cells each coupled to corresponding two word lines and corresponding two bit lines. Each memory cell includes a memory element configured to store information on the basis of changes in resistance and two select transistors. One terminal of the memory element is coupled to one of the two bit lines corresponding to the memory cell; the other terminal is coupled to respective drains of the select transistors; respective sources of the select transistors are coupled to the other bit line; a gate of one of the select transistors is coupled to one of the two word lines corresponding to the memory cell; and a gate of the other is coupled to the other word line.
Abstract:
To provide a memory apparatus capable of operating at high speed with less current and inhibiting a decrease in an amplitude of a readout signal.A memory apparatus includes a memory device at least including a memory layer, a magnetic fixed layer, and an intermediate layer made of a non-magnetic body disposed between the memory layer and the magnetic fixed layer; current being capable of flowing in a lamination direction; a wiring for supplying current flowing to the lamination direction; and a memory control unit for storing information by flowing standby current at a predetermined level to the memory device via the wiring to incline the magnetization direction of the memory layer from the direction perpendicular to a film surface and flowing recording current that is higher than the standby current via the wiring to change the magnetization direction of the memory layer.
Abstract:
A memory element having a layer structure, the layer structure includes: a memory layer whose magnetization direction is changed in accordance with information; a magnetization-fixed layer having magnetization perpendicular to a film surface to be a basis of the information stored in the memory layer; and an intermediate layer made of a non-magnetic material, disposed between the memory layer and the magnetization-fixed layer, wherein at least a periphery of the memory layer is covered with a magnetic material through a non-magnetic material among the layer structure.
Abstract:
A storage element includes a storage layer which has magnetization perpendicular to its film surface and which retains information by a magnetization state of a magnetic substance, a magnetization pinned layer having magnetization perpendicular to its film surface which is used as the basis of the information stored in the storage layer, an interlayer of a non-magnetic substance provided between the storage layer and the magnetization pinned layer, and a cap layer which is provided adjacent to the storage layer at a side opposite to the interlayer and which includes at least two oxide layers. The storage element is configured to store information by reversing the magnetization of the storage layer using spin torque magnetization reversal generated by a current passing in a laminate direction of a layer structure including the storage layer, the interlayer, and the magnetization pinned layer.
Abstract:
A storage element including a storage layer configured to hold information by use of a magnetization state of a magnetic material, with a pinned magnetization layer being provided on one side of the storage layer, with a tunnel insulation layer, and with the direction of magnetization of the storage layer being changed through injection of spin polarized electrons by passing a current in the lamination direction, so as to record information in the storage layer, wherein a spin barrier layer configured to restrain diffusion of the spin polarized electrons is provided on the side, opposite to the pinned magnetization layer, of the storage layer; and the spin barrier layer includes at least one material selected from the group composing of oxides, nitrides, and fluorides.
Abstract:
A method of manufacturing a storage element by forming a magnetic layer; and forming a tunnel barrier layer on the magnetic layer, wherein, n the forming a tunnel barrier layer, the tunnel barrier layer is formed to a predetermined thickness in at least two steps in a divided manner.
Abstract:
There is provided a memory element having a layered structure, including a memory layer having magnetization perpendicular to a film face in which a magnetization direction is changed corresponding to information, and including a Co—Fe—B magnetic layer and at least on non-magnetic layer; the magnetization direction being changed by flowing a current in a lamination direction of the layered structure to record the information in the memory layer, a magnetization-fixed layer having magnetization perpendicular to the film face that becomes a base of the information stored in the memory layer, and an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer, further including a laminated structure where an oxide layer, the Co—Fe—B magnetic layer and the non-magnetic layer are laminated is formed.
Abstract:
A memory element includes a layered structure. The layered structure includes a memory layer, a magnetization-fixed layer, and an intermediate layer. The memory layer has magnetization perpendicular to a film face in which a direction of the magnetization is changed depending on information, and the direction of the magnetization is changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer. The magnetization-fixed layer has magnetization perpendicular to a film face that becomes a base of the information stored in the memory layer, and has a laminated ferri-pinned structure including at least two ferromagnetic layers and a non-magnetic layer. The non-magnetic layer includes Cr. The intermediate layer is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer.
Abstract:
A magnetoresistive element includes: a first laminated structure body having a first surface and a second surface 20B facing the first surface; and a second laminated structure body formed by laminating a storage layer, an intermediate layer, and a magnetization fixed layer, the second laminated structure body having a first surface and a second surface facing the first surface, the first surface being positioned facing the second surface of the first laminated structure body. The first laminated structure body has a laminated structure including, from the first surface side of the first laminated structure body, a first layer made of a metal nitride and a second layer made of ruthenium or a ruthenium compound.