Abstract:
An integrated circuit includes a substrate with an active area, a first insulating layer, a second insulating layer, and a phase-change material. The integrated circuit further includes a heating element in an L-shape, with a long side in direct physical contact with the phase-change material and a short side in direct physical contact with a via. The heating element is surrounded by first, second, and third insulating spacers, with the first insulating spacer having a planar first sidewall in contact with the long side of the heating element, a convex second sidewall, and a planar bottom face in contact with the short side of the heating element. The second and third insulating spacers are in direct contact with the first insulating spacer and the long side of the heating element.
Abstract:
A method can be used for manufacturing a high-voltage transistor in and on a high-voltage region of a silicon-on-insulator type bulk that includes a semiconductor film having a first thickness, electrically insulated from a carrier bulk by a buried dielectric layer. The semiconductor film in the high-voltage region is selectively epitaxially grown to a second thickness that is greater than the first thickness while the semiconductor film remains at the first thickness in a region outside the high-voltage region.
Abstract:
A method of manufacturing first, second, and third transistors of different types inside and on top of first, second, and third semiconductor areas of an integrated circuit, including the steps of: a) depositing a first dielectric layer and a first polysilicon layer on the third areas; b) depositing a second dielectric layer on the second areas; c) depositing an interface layer on the first areas; d) depositing a layer of a material of high permittivity and then a layer of a metallic material on the first and second areas; e) depositing a second polysilicon layer on the first, second, and third areas; f) defining the gates of the transistors in the third areas; and g) defining the gates of the transistors in the first and second areas.
Abstract:
Bipolar transistors and MOS transistors are formed in a common process. A semiconductor layer is arranged on an insulating layer. On a side of the bipolar transistors: an insulating region including the insulating layer is formed; openings are etched through the insulating region to delimit insulating walls; the openings are filled with first epitaxial portions; and the first epitaxial portions and a first region extending under the first epitaxial portions and under the insulating walls are doped. On the side of the bipolar transistors and on a side of the MOS transistors: gate structures are formed; second epitaxial portions are made; and the second epitaxial portions covering the first epitaxial portions are doped.
Abstract:
A device includes both low-voltage (LV) and high-voltage (HV) metal oxide semiconductor (MOS) transistors of opposite types. Gate stacks for the transistors are formed over a semiconductor layer. First spacers made of a first insulator are provided on the gate stacks of the LV and HV MOS transistors. Second spacers made of a second insulator are provided on the gate stacks of the HV MOS transistors only. The insulators are selectively removed to expose the semiconductor layer. Epitaxial growth of semiconductor material is made from the exposed semiconductor layer to form raised source-drain structures that are separated from the gate stacks by the first spacers for the LV MOS transistors and the second spacers for the HV MOS transistors.
Abstract:
The invention relates to an integrated circuit comprising a semi-conducting substrate and first and second cells. Each cell comprises first and second transistors of nMOS and pMOS type including first and second gate stacks including a gate metal. There are first and second ground planes under the first and second transistors and an oxide layer extending between the transistors and the ground planes. The gate metals of the nMOS and of a pMOS exhibit a first work function and the gate metal of the other pMOS exhibiting a second work function greater than the first work function. The difference between the work functions is between 55 and 85 meV and the first work function Wf1 satisfies the relation Wfmg−0.04−0.005*Xge