Abstract:
A memory device includes a memory array with memory cells arranged in rows and columns and with word lines and bit lines. A dummy structure includes a dummy row of dummy cells and a dummy word line. A first pre-charging stage biases a word line of the memory array. An output stage includes a plurality of sense amplifiers. Each sense amplifier generates a corresponding output signal representing a datum stored in a corresponding memory cell pre-charged by the first pre-charging stage. A second pre-charging stage biases the dummy word line simultaneously with the word line biased by the first pre-charging stage. The output stage includes an enable stage, which detects a state of complete pre-charging of an intermediate dummy cell.
Abstract:
A circuit for reading a memory cell of a non-volatile memory device provided with a memory array with cells arranged in wordlines and bitlines, among which a first bitline, associated to the memory cell, and a second bitline, has: a first circuit branch associated to the first bitline and a second circuit branch associated to the second bitline, each with a local node, coupled to which is a first dividing capacitor, and a global node, coupled to which is a second dividing capacitor; a decoder stage for coupling the local node to the first or second bitlines and coupling the global node to the local node; and a differential comparator stage supplies an output signal indicative of the datum stored; and a control unit for controlling the decoder stage, the coupling stage, and the differential comparator stage for generation of the output signal.
Abstract:
A circuit for reading a memory cell of a non-volatile memory device provided with a memory array with cells arranged in wordlines and bitlines, among which a first bitline, associated to the memory cell, and a second bitline, has: a first circuit branch associated to the first bitline and a second circuit branch associated to the second bitline, each with a local node, coupled to which is a first dividing capacitor, and a global node, coupled to which is a second dividing capacitor; a decoder stage for coupling the local node to the first or second bitlines and coupling the global node to the local node; and a differential comparator stage supplies an output signal indicative of the datum stored; and a control unit for controlling the decoder stage, the coupling stage, and the differential comparator stage for generation of the output signal.
Abstract:
A non-volatile memory device includes a memory array having memory cells arranged in wordlines and receiving a supply voltage. A row decoder includes an input and pre-decoding module, which is configured to receive address signals and generate pre-decoded address signals at low voltage, in the range of the supply voltage. A driving module is configured to generate biasing signals for biasing the wordlines of the memory array starting from decoded address signals, which are a function of the pre-decoded address signals, at high voltage and in the range of a boosted voltage higher than the supply voltage. A processing module is configured to receive the pre-decoded address signals and to jointly execute an operation of logic combination and an operation of voltage boosting of the pre-decoded address signals for generation of the decoded address signals.