Abstract:
The present invention relates to a corrugated board comprising an adhesive arranged to attach a fluted corrugated medium to a liner wherein the adhesive comprises starch and microfibrillated cellulose. The invention also relates to a method to produce said corrugated board.
Abstract:
The present invention relates to an UV blocking film comprising microfibrillated cellulose wherein at least part of the microfibrillated cellulose is microfibrillated cellulose produced from non-chemical modified lignocellulosic material. The invention also relates to a method for producing the film, use of said film as well as a composition having UV blocking properties.
Abstract:
A method for the production of a film from a fibrous web, wherein the method comprises the steps of: providing a fibrous suspension comprising a microfibrillated cellulose, wherein the content of the microfibrillated cellulose of said suspension is in the range of 60 to 99.9 weight-% based on total dry solid content, adding an amphoteric polymer to said suspension to provide a mixture of said microfibrillated cellulose and said amphoteric polymer, providing said mixture to a substrate to form a fibrous web, wherein the amount of amphoteric polymer in said mixture is in the range of 0.1 to 20 kg/metric ton based on total dry solid content; and dewatering said fibrous web to form a film having a basis weight of less than 40 g/m2 and a density in the range of from 700 to 1000 kg/m3.
Abstract:
A method for manufacturing a film, wherein said film has a basis weight of less than 50 g/m2 and wherein the density of the film is higher than 750 kg/m2 comprising the steps of: providing a suspension comprising microfibrillated cellulose (MFC); forming a web of said suspension on a porous wire, microfibrillated cellulose (MFC); surface sizing said web, wherein the web, at the beginning of the surface sizing step, has a moisture content in the range of from 10 to 50 wt-%; drying said surface sized web to a final moisture content of between 0.1-20 wt-% to form said film.
Abstract:
The present invention relates to an UV blocking film comprising microfibrillated cellulose wherein at least part of the microfibrillated cellulose is microfibrillated cellulose produced from non-chemical modified lignocellulosic material. The invention also relates to a method for producing the film, use of said film as well as a composition having UV blocking properties.
Abstract:
A method for manufacturing of a film, wherein said film is manufactured in a paper or paper board machine, wherein the method comprises the steps of providing a solution of a nanofibrillated poly-saccharide, wherein said solution comprises from 0.01 to 50 weight-% nanofibrillated polysaccharide, and wherein the nanofibrillated polysaccharide is any one of microfibrillated cellulose, nanofibrillated cellulose, nanocrystalline cellulose, microcrystalline cellulose, cellulose whiskers and cellulose derivative or a combination or mixture thereof, wherein the method further comprises the steps of providing an amphiphilic polymer; and providing a mixture of said amphiphilic polymer and said solution comprising nanofibrillated polysaccharide, whereby an intermediate solution is obtained; bringing said intermediate solution into a foam; providing said foam in the paper or board machine.
Abstract:
The invention concerns a fibrous-based oxygen barrier film, which comprises (i) a microfibrillated cellulose (MFC) film, (ii) an oxygen barrier polymer layer, (iii) an optional tie layer, and (iv) an outermost polyolefin layer. The invention even concerns a laminate, in which said multilayer film is combined with a fibrous paper or board base by means of an intermediate poly-ethylene layer. The oxygen barrier polymerlayer, which preferably is EVOH, and the polyolefin layer are brought by coextrusion onto the MFC film. The film and the laminate according to the invention aim at an improved oxygen barrier in high humidity conditions and have use in oxygen-sensitive food packaging.
Abstract:
A method of manufacturing a film comprising microfibrillated cellulose, wherein the method comprises the steps of: providing a first suspension comprising microfibrillated cellulose, having a dry content of from 0.2 to 2.0%, wherein the first suspension has a first Schopper-Riegler (SR) value; forming a first web of said suspension; at least partly dewatering said first web; applying a second suspension comprising microfibrillated cellulose, and/or fines and/or fibers onto a surface of said formed and at least partially dried first web, wherein the second suspension has a second Schopper-Riegler value which is higher than said first Schopper-Riegler value, thereby forming a film.
Abstract:
The present invention relates to a method of producing precipitated calcium carbonate (PCC) where a retention/strength enhancing chemical is added to milk of lime to form a mixture thereof prior to adding the mixture of the retention/strength enhancing chemical and milk of lime to paper making stock in a pipeline leading to a headbox of a paper making machine, whereafter carbon dioxide is introduced to the paper making stock, and the carbonation reaction between milk of lime and carbon dioxide is allowed to proceed in the presence of both fibers and the retention/strength enhancing chemical.
Abstract:
A wet laid sheet material formed from a fibrous web, characterized in that the initial fibrous web contains >50% a calculated dry microfibrillated material composition by weight of the total fiber material content in the web, wherein the fibrillated material composition has a SR value of >70; and in that the moisture content in the sheet material is >30 wt.-%.