Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.
Abstract:
A subscriber station configured to communicate with one or more base stations or other transmission points (TPs) in a wireless communication network is configured to receive, from the network, information associated with one or more of the TPs that are candidates for coordinated multipoint (CoMP) transmission with the subscriber station, to measure a plurality of channel quality values for each of the one or more TPs, and to report the measured channel quality values to the network.
Abstract:
A base station is configured to support communications with at least one user equipment (UE) configured for machine type communications (MTC). The base station includes processing circuitry configured to determine a transmission scheme based on a category of the at least one UE. The base station also includes a transmitter configured to transmit, using a determined transmission scheme, a physical downlink shared channel (PDSCH) in a reduced bandwidth to the at least one UE. The UE includes a receiver configured to receive a physical downlink shared channel (PDSCH) in a reduced bandwidth from at least one base station. The UE also includes processing circuitry configured to determine a transmission scheme utilized by at least one base station.
Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.
Abstract:
Coordinate multi-point (CoMP) transmission is facilitated by resolving collisions between feedback reporting. Based upon the conditions within the network, collision resolution may be by dropping a channel report during a subframe, multiplexing channel reports from a plurality of user equipment, compressing channel reports from a plurality of user equipment, and combined reporting, either through joint reports or by using carrier aggregation, for conditions between a user equipment and a plurality of transmission points. New signaling and reporting formats facilitate selection of a collision resolution suitable for current network conditions.
Abstract:
Methods and apparatuses schedule resources and identify resource scheduling in a MU MIMO wireless communication system. A method for identifying resource scheduling for a UE includes receiving downlink control information; identifying, from the downlink control information, one or more DM-RS ports assigned to the UE and a PDSCH EPRE to DM-RS EPRE ratio; and identifying data intended for the UE in a resource block in a downlink subframe using the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio. A method for scheduling resources includes identifying one or more DM-RS ports to assign to a UE and a PDSCH EPRE to DM-RS EPRE ratio for identifying data intended for the UE in a resource block in a downlink subframe; and including an indication of the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio in downlink control information.
Abstract:
An apparatus includes a baseband signal processing block, processing circuitry, and at least one radio frequency (RF) communication module communicably coupled to the baseband signal processing block and configured to communicate using a selected mode of communication in a channel. The processing circuitry is configured to detect a sub-channel band of unavailable spectrum within the channel, the band of unavailable spectrum being less than a whole of the channel. The channel includes one contiguous band of frequencies divisible into at least two non-overlapping non-adjacent sub-channels. The processing circuitry is configured to select one mode of communication selected from a plurality of modes including: a carrier aggregation (CA) only mode, a multiple input multiple output (MIMO) only mode, and a carrier aggregation multiple input multiple output (CA-MIMO) hybrid mode.
Abstract:
For use in a wireless network, a method for scheduling a Downlink Pilot Time Slot (DwPTS) subframe is provided. The method comprises expanding Physical Resource Blocks (PRBs) in a subframe prior to a DwPTS subframe to include resource elements (REs) of the DwPTS subframe, a number of OFDM symbols of the DwPTS subframe being less than or equal to a threshold OFDM symbol number. The method further comprises facilitating for a UE to demodulate REs in a DwPTS subframe based on DeModulation Reference Signals (DMRS) transmitted in a downlink subframe prior to the DwPTS subframe.
Abstract:
A base station is configured to support communications with at least one user equipment (UE) configured for machine type communications (MTC). The base station includes processing circuitry configured to determine a transmission scheme based on a category of the at least one UE. The base station also includes a transmitter configured to transmit, using a determined transmission scheme, a physical downlink shared channel (PDSCH) in a reduced bandwidth to the at least one UE. The UE includes a receiver configured to receive a physical downlink shared channel (PDSCH) in a reduced bandwidth from at least one base station. The UE also includes processing circuitry configured to determine a transmission scheme utilized by at least one base station.
Abstract:
Methods and apparatuses schedule resources and identify resource scheduling in a MU MIMO wireless communication system. A method for identifying resource scheduling for a UE includes receiving downlink control information; identifying, from the downlink control information, one or more DM-RS ports assigned to the UE and a PDSCH EPRE to DM-RS EPRE ratio; and identifying data intended for the UE in a resource block in a downlink subframe using the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio. A method for scheduling resources includes identifying one or more DM-RS ports to assign to a UE and a PDSCH EPRE to DM-RS EPRE ratio for identifying data intended for the UE in a resource block in a downlink subframe; and including an indication of the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio in downlink control information.