Abstract:
A memory device includes: a first substrate; a peripheral circuit provided on the first substrate; a first metal bonding layer provided on the peripheral circuit; a second metal bonding layer directly bonded to the first metal bonding layer; a memory cell array provided on the second metal bonding layer; and a second substrate provided on the memory cell array. A page buffer circuit in the peripheral circuit receives a verification result through the metal bonding layers, divides the verification result into stages, and sequentially outputs the verification result for the division into the stages, and a pass/failure checker in the peripheral circuit sequentially performs a counting operation about each of the stages to generate accumulated values, and compares the accumulated values and a reference value which increases from an initial value as the counting operation is performed, and the initial value is set by an external memory controller.
Abstract:
A nonvolatile memory device may include a page buffer including a plurality of latch sets that latch each page datum of selected memory cells among a plurality of memory cells according to each of read signal sets including at least one read signal, and a control logic configured to detect a degradation level of the memory cells and determine a read parameter applied to at least one of the read signal sets based on the detected degradation level.
Abstract:
A memory device comprises a memory cell array including a first memory cell disposed on a substrate and a second memory cell above the first memory cell; a first word line connected to the first memory cell and a second word line connected to the second memory cell, the second word line disposed above the first word line; and a word line defect detection circuit configured to monitor a number of pulses of a pumping clock signal while applying a first voltage to the first word line to detect a defect of the first word line. The voltage generator is configured to apply a second voltage different from the first voltage to the second word line for programming the second memory cell when the number of pulses of the pumping clock signal is smaller than a reference value.
Abstract:
A nonvolatile memory device may include a page buffer including a plurality of latch sets that latch each page datum of selected memory cells among a plurality of memory cells according to each of read signal sets including at least one read signal, and a control logic configured to detect a degradation level of the memory cells and determine a read parameter applied to at least one of the read signal sets based on the detected degradation level.
Abstract:
A terminal may be provided with a magnetic regenerator unit using a magnetocaloric effect of magnetocaloric materials and a magnetic cooling system having the same. By a circular magnetic regenerator structure capable of evenly flowing heat transfer fluid and magnetic field and the flow of the heat transfer fluid being changed in the same way, and a magnetic band having a relative permeability, similar to a relative permeability of the magnetic regenerator, high efficiency of a flux generator may be obtained while reducing torque of a rotator. Power consumption for driving may be reduced due to the reduction of the cogging torque, and the magnetic band may be manufactured at a low cost by using inexpensive iron powder.
Abstract:
A method of programming a nonvolatile memory device comprises determining a temperature condition of the nonvolatile memory device, determining a program pulse period according to the temperature condition, supplying a program voltage to a selected word line using the program pulse period, and supplying a pass voltage to unselected word lines while supplying the program voltage to the selected word line.