Abstract:
A method and apparatus for encoding video by using deblocking filtering, and a method and apparatus for decoding video by using deblocking filtering are provided. The method of encoding video includes: splitting a picture into a maximum coding unit; determining coding units of coded depths and encoding modes for the coding units of the maximum coding unit by prediction encoding the coding units of the maximum coding unit based on at least one prediction unit and transforming the coding units based on at least one transformation unit, wherein the maximum coding unit is hierarchically split into the coding units as a depth deepens, and the coded depths are depths where the maximum coding unit is encoded in the coding units; and performing deblocking filtering on video data being inversely transformed into a spatial domain in the coding units, in consideration of the encoding modes.
Abstract:
An apparatus for decoding an image includes an entropy decoder that performs entropy decoding to generate quantized transformation coefficients of a transformation unit in a coding unit and an inverse transformer that inverse quantizes the quantized transformation coefficients to generate transformation coefficients of the transformation unit and inverse transforms the transformation coefficients to generate residual components of the transformation unit.
Abstract:
A method and apparatus for decoding a video and a method and apparatus for encoding a video are provided. The method for decoding the video includes: receiving and parsing a bitstream of an encoded video; extracting, from the bitstream, encoded image data of a current picture of the encoded video assigned to a maximum coding unit, and information about a coded depth and an encoding mode according to the maximum coding unit; and decoding the encoded image data for the maximum coding unit based on the information about the coded depth and the encoding mode for the maximum coding unit, in consideration of a raster scanning order for the maximum coding unit and a zigzag scanning order for coding units of the maximum coding unit according to depths.
Abstract:
An apparatus for decoding an image includes an encoding information extractor which extracts split information indicating whether to split a coding unit of an upper depth into coding units of deeper depths and skip information indicating whether a prediction mode of a current coding unit is a skip mode, from image data and a decoding unit which determines a split structure of a maximum coding unit, according to the split information so that the maximum coding unit is hierarchically split as a depth increases and determines whether the prediction mode of the current coding unit is the skip mode according to the skip information.
Abstract:
Provided are motion vector determining method and apparatus for determining a motion vector via motion vector prediction.The motion vector determining method involves determining a candidate motion vector list comprising motion vectors of a plurality of candidate blocks referred so as to predict a motion vector of a current block, when a reference image of a first candidate block from among the plurality of candidate blocks is different from a reference image of the current block, determining whether or not to use a motion vector of the first candidate block from the candidate motion vector list, based on whether each of the reference image of the current block and the reference image of the first candidate block is a short-term reference image or a long-term reference image, and determining the motion vector of the current block by using a candidate motion vector selected from among the motion vectors comprised in the candidate motion vector list.
Abstract:
A method of determining a reference picture set (RPS), which is a set of reference pictures used in predictive decoding of a current picture that is to be decoded includes: obtaining a flag indicating whether the RPS is determined based on POC values of the current picture and a previous picture or whether the RPS is determined based on an index of a reference RPS, which is an identification value of the reference RPS that is one of pre-defined RPSs and is referred to in determining the RPS, and a delta RPS that is a difference value between a POC vale of a reference picture included in the reference RPS and a POC value of a reference picture included in the RPS; and determining the RPS according to a value of the flag.
Abstract:
A method of determining a reference picture set (RPS), which is a set of reference pictures used in predictive decoding of a current picture that is to be decoded includes: obtaining a flag indicating whether the RPS is determined based on picture order count (POC) values of the current picture and a previous picture or whether the RPS is determined based on an index of a reference RPS, which is an identification value of the reference RPS that is one of pre-defined RPSs and is referred to in determining the RPS, and a delta RPS that is a difference value between a POC vale of a reference picture included in the reference RPS and a POC value of a reference picture included in the RPS; and determining the RPS according to a value of the flag.
Abstract:
Provided are a video encoding method and apparatus having temporal scalability, and a video decoding method and apparatus having temporal scalability. The video encoding method includes: splitting pictures included in a picture sequence into temporal sub-layers; classifying, as a first temporal layer access picture or a second temporal layer access picture, a temporal layer access picture based on whether a picture encoded after the temporal layer access picture is capable of referring to a picture encoded before the temporal layer access picture; and adding, to transmission unit data including the temporal layer access picture, type syntax information for identifying the first temporal layer access picture and the second temporal layer access picture, wherein the picture encoded after the temporal layer access picture belongs to a same temporal sub-layer as the temporal layer access picture or belongs to an upper temporal sub-layer to the temporal layer access picture.
Abstract:
Provided are an inter prediction method and a motion compensation method. The inter prediction method includes: performing inter prediction on a current image by using a long-term reference image stored in a decoded picture buffer; determining residual data and a motion vector of the current image generated via the inter prediction; and determining least significant bit (LSB) information as a long-term reference index indicating the long-term reference image by dividing picture order count (POC) information of the long-term reference image into most significant bit (MSB) information and the LSB information.
Abstract:
A video encoding method and apparatus and a video decoding method and apparatus are provided. The video encoding method includes: prediction encoding in units of a coding unit as a data unit for encoding a picture, by using partitions determined based on a first partition mode and a partition level, so as to select a partition for outputting an encoding result from among the determined partitions; and encoding and outputting partition information representing a first partition mode and a partition level of the selected partition. The first partition mode represents a shape and directionality of a partition as a data unit for performing the prediction encoding on the coding unit, and the partition level represents a degree to which the coding unit is split into partitions for detailed motion prediction.