Abstract:
An interference control method of a power transmitting unit (PTU) includes determining whether the PTU is in an interference environment in which interference by a neighbor PTU occurs, and controlling a communication parameter of either one or both of the neighbor PTU and a power receiving unit (PRU) in response to a result of the determining being that the PTU is in the interference environment.
Abstract:
A wireless power transmission apparatus includes a plurality of transmission (TX) resonators configured to resonate with at least one reception (RX) resonator, and wirelessly transmit power to the at least one RX resonator; and a frequency controller configured to control the input frequency so that power is stably supplied to the at least one RX resonator.
Abstract:
An apparatus and a method for charge control are provided. The apparatus for charge control may include an integrated direct current-to-direct current (DC/DC) converter configured to step up an output voltage level of a load to be greater than or equal to a supply voltage level set in a power amplifier, and the power amplifier configured to convert a direct current (DC) voltage stepped up by the integrated DC/DC converter into an alternating current (AC) voltage based on a resonant frequency, and to amplify the converted AC voltage. The apparatus for charge control may include a rectification unit configured to convert an AC power received wirelessly into a DC power; and a DC/DC converter configured to step down a voltage level of the DC power to a voltage level required by a load in the receiving mode.
Abstract:
An apparatus and method of using near field communication (NFC) and wireless power transmission (WPT) are provided. A power receiving apparatus includes a resonator configured to receive a power and to output the power. The power receiving apparatus further includes a near field communication (NFC) receiver configured to perform wireless communication using the power output by the resonator. The power receiving apparatus further includes a wireless power transmission (WPT) receiver configured to supply a voltage using the power output by the resonator. The power receiving apparatus further includes a connecting unit configured to selectively connect the resonator to either the NFC receiver or the WPT receiver. The power receiving apparatus further includes a mode selector configured to control the connecting unit to selectively connect the resonator to either the NFC receiver or the WPT receiver based on the power output by the resonator.
Abstract:
A planar spiral induction coil includes a strip-shaped coil having at least one turn. The at least one turn has a width that changes as a distance from a beginning of the strip-shaped coil increases in a length direction of the strip-shaped coil. Each turn of the at least one turn has a respective width that causes an equal current to flow through each turn of the at least one turn.
Abstract:
A method of compensating for reverse current leakage in an active rectifier may include advancing an output of a comparator by a predetermined period of time by applying a predetermined offset voltage to a reference voltage input to the comparator, and activating a switch based on the output of the comparator. The method may also include deactivating the switch when a predetermined time delay elapses from a point in time at which the switch was activated.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.
Abstract:
A wireless power transmission apparatus includes a measurer configured to measure a value of a current flowing in a source resonator, a communication unit configured to receive a value of a charging current of a battery from a wireless power reception apparatus, and a power controller configured to control an amount of power to be transmitted by the source resonator based on either one or both of the value of the current measured by the measurer and the value of the charging current received by the communication unit. The value of the charging current of the battery varies as the battery is charged.
Abstract:
A high efficiency variable power transmitting apparatus outputs a variable power by modulating, with respect to a time axis, a high frequency signal having a constant amplitude by turning the high frequency signal ON and OFF, amplifying the variable power to satisfy a requested power level of a target device based on a supply voltage having a predetermined level, converting an alternating current (AC) voltage received from a power source to a direct current (DC) voltage, generating the supply voltage having the predetermined level based on the DC voltage, and providing the supply voltage having the predetermined level to the PA.
Abstract:
A power transmitting unit (PTU) transmits a power wirelessly based on a location of a power receiving unit (PRU). The PTU determines whether the PRU is located within a charging area of the PTU based on frequency information corresponding to an inflection point detected on a curve of electrical characteristics of a resonator of the PTU.