Abstract:
A portable terminal is provided. The portable terminal includes a shielding member attached to an inner surface of an external part, a shielding wall formed on the shielding member, a first coil attached to a surface of the shielding member that faces the inner surface of the external part, and a second coil attached to the surface of the shielding member, with the second coil surrounds the first coil on a same plane and the shielding wall being disposed between the first and second coil.
Abstract:
Provided is a method of detecting a defect of a pattern using vectorization to increase accuracy and efficiency in OPC modeling and OPC verification. The method includes acquiring a target layout image associated with a target pattern, acquiring a pattern image associated with a pattern formed on a substrate, extracting an edge image from the pattern image, producing a first vector form based on the target layout image, producing a second vector form based on the edge image, and comparing the first vector form with the second vector form.
Abstract:
Disclosed are an apparatus and a method for charging power using a resonant coupling. The apparatus includes a transmission power converter for converting Direct Current (DC) power to Alternating Current (AC) power, a controller for adjusting a Q factor of a transmission resonator by using a frequency of the converted AC power and a resonant frequency of the transmission resonator and controlling adaptive impedance matching, and a transmission resonator for wirelessly transmitting the converted AC power to a receiver through the adjusted Q factor and the controlled adaptive impedance matching, the transmission resonator having a coil installed in the transmitter.
Abstract:
An electronic device is provided. The electronic device includes a main body including a battery pack and a battery cover; a non-contact near field communication antenna included in the battery pack; and a wireless charging coil portion included in the battery cover and disposed around an outer periphery of the antenna, such that the wireless coil portion does not overlap with the non-contact near field communication antenna.
Abstract:
A portable terminal is provided, including a cover member which is detachably provided at a rear surface of a main body of a terminal, a resonant antenna for a reception unit provided inside of the cover member, a reception circuit unit provided inside of the main body, and a connection unit for connecting the resonant antenna for a reception unit with the reception circuit unit. The portable terminal efficiently receives the signal power provided from a charger by arranging the resonant antenna inside of the cover member, and minimizes the thickness of the portable terminal by providing the reception circuit unit inside of the main body of the terminal.
Abstract:
An atomic layer deposition apparatus and an atomic layer deposition method increase productivity. The atomic layer deposition apparatus includes a reaction chamber, a heater for supporting a plurality of semiconductor substrates with a given interval within the reaction chamber and to heat the plurality of semiconductor substrates and a plurality of injectors respectively positioned within the reaction chamber and corresponding to the plurality of semiconductor substrates supported by the heater. The plurality of injectors are individually swept above the plurality of semiconductor substrates to spray reaction gas.
Abstract:
A portable terminal is provided. The portable terminal includes a shielding member attached to an inner surface of an external part, a shielding wall formed on the shielding member, a first coil attached to a surface of the shielding member that faces the inner surface of the external part, and a second coil attached to the surface of the shielding member, with the second coil surrounds the first coil on a same plane and the shielding wall being disposed between the first and second coil.
Abstract:
A wireless charging apparatus provided in an electronic device is provided. The wireless charging apparatus includes a charging resonance unit for wireless charging; a driving circuit unit to which the charging resonance unit is connected and to which an internal circuitry is mounted; a shield member mounted to a rear surface of the charging resonance unit; and a heat dispersion member mounted to the driving circuit unit and the shield member to disperse heat generated by the driving circuit unit.
Abstract:
A method of manufacturing a semiconductor device is disclosed. The method includes forming a first insulting layer on a substrate, forming a first conductor pattern in the first insulating layer, forming a second insulating layer on the first insulating layer, and forming a second wiring pattern and a contact via in the second insulating layer, wherein a top surface of the first insulating layer is higher than a top surface of the first conductor pattern.
Abstract:
A cordless charging apparatus includes a housing, a main substrate accommodated in the housing, a coil unit stacked on the main substrate, and a connection member for electrically connecting the coil unit to the main substrate. The connection member includes a connector provided on the main substrate, and a connection substrate provided at the coil unit in order to contact the connector and electrically connect with the coil unit stacked on the main substrate.