摘要:
Device structures, design structures, and fabrication methods for passive devices that may be used as electrostatic discharge protection devices in fin-type field-effect transistor integrated circuit technologies. A portion of a device layer of a semiconductor-on-insulator substrate is patterned to form a device region. A well of a first conductivity type is formed in the epitaxial layer and the device region. A doped region of a second conductivity type is formed in the well and defines a junction with a portion of the well. The epitaxial layer includes an exterior sidewall spaced from an exterior sidewall of the device region. Another portion of the device layer may be patterned to form fins for fin-type field-effect transistors.
摘要:
A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.
摘要:
A method, apparatus and program product are provided for simulating a circuit. A plurality of elements of the circuit is represented by device models including pass/fail criteria. A circuit simulation program is executed on a hardware implemented processor where the circuit simulation program is configured to obtain simulation results from the device models in response to applied parameters. The circuit simulation program identifies a failure of one or more of the plurality of elements of the circuit based on the pass/fail criteria of the device models. The circuit simulation program is further configured to output the failures during simulation of the one or more of the plurality of elements that are identified in response to the applied parameters.
摘要:
A field effect transistor (FET) that includes a drain formed in a first plane, a source formed in the first plane, a channel formed in the first plane and between the drain and the source and a gate formed in the first plane. The gate is separated from at least a portion of the body by an air gap. The air gap is also in the first plane.
摘要:
Disclosed is a method of executing an electrical function, such as a fusing operation, by activation through a chip embedded photodiode through spectrally selected external light activation, and corresponding structure and circuit. The present invention is based on having incident light with specific intensity/wave length characteristics, in conjunction with additional circuit elements to an integrated circuit, perform the implementation of repairs, i.e., replacing failing circuit elements with redundant ones for yield and/or reliability. Also to perform disconnection of ESD protection device from input pad one the packaged chip is placed in system. No additional pins on the package are necessary.
摘要:
A hardware description language (HDL) design structure encoded on a machine readable data storage medium, the HDL design comprising elements that when processed in a computer aided design system generates a machine executable representation of a device for implementing dynamic refresh protocols for DRAM based cache. The HDL design structure further comprises an integrated circuit having a differential driver, comprising: a first driver and a second driver forming the differential driver, the drivers are coupled in parallel between a first voltage source and a second voltage source; a first switch coupled to the first driver and configured to turn off the first driver during an ESD event such that the first driver sustains stress during the ESD event; and a second switch coupled to the second driver and configured to turn off the second driver during the ESD event such that the second driver sustains stress during the ESD event.
摘要:
Device structure for active devices fabricated in a semiconductor-on-insulator (SOI) substrate and design structures for a radiofrequency integrated circuit. The device structure includes a first isolation region in the semiconductor layer that extends from a top surface of a semiconductor layer to a first depth, a second isolation region in the semiconductor layer that extends from the top surface of the semiconductor layer to a second depth greater than the first depth, and a first doped region in the semiconductor layer. The first doped region is disposed vertically between the first isolation region and an insulating layer disposed between the semiconductor layer and a handle wafer of the SOI substrate. The device structure may be included in a design structure embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit.
摘要:
High-voltage device structures, methods for fabricating such device structures using complementary metal-oxide-semiconductor (CMOS) processes, and design structures for high-voltage circuits. The planar device structure, which is formed using a semiconductor-on-insulator (SOI) substrate, includes a semiconductor body positioned between two gate electrodes. The gate electrodes and the semiconductor body may be formed from the monocrystalline SOI layer of the SOI substrate. A dielectric layer separates each of the gate electrodes from the semiconductor body. These dielectric layers are formed by defining trenches in the SOI layer and filling the trenches with a dielectric material, which may occur concurrent with a process forming device isolation regions.
摘要:
A method and resulting structure for fabricating a FET transistor for an integrated circuit on a silicon oxide (SOI) substrate comprising the steps of forming recesses in a substrate on both sides of a gate on the substrate, implanting oxygen ions into the recesses, and annealing the substrate to convert the oxygen ions into a SOI layer below each recess.
摘要:
Design structure for an electrostatic discharge (ESD) protection circuit for protecting an integrated circuit chip from an ESD event. The design structure for the ESD protection circuit includes a stack of BigFETs, a BigFET gate driver for driving the gates of the BigFETs, and a trigger for triggering the BigFET gate driver to drive the gates of the BigFETs in response to an ESD event. The BigFET gate driver includes gate pull-up circuitry for pulling up the gate of a lower one of the BigFETs. The gate pull-up circuitry is configured so as to obviate the need for a diffusion contact between the stacked BigFETs, resulting in a significant savings in terms of the chip area needed to implement the ESD protection circuit.