Method for forming a DRAM cell with a fork-shaped capacitor
    21.
    发明授权
    Method for forming a DRAM cell with a fork-shaped capacitor 失效
    用叉形电容器形成DRAM单元的方法

    公开(公告)号:US6027981A

    公开(公告)日:2000-02-22

    申请号:US958536

    申请日:1997-10-27

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    CPC classification number: H01L27/10852 H01L27/10817

    Abstract: A method for forming a fork-shaped capacitor of a dynamic random access memory cell is disclosed. The method includes forming a first doped polysilicon layer (118) over a semiconductor substrate (110), wherein at least a portion of the first doped polysilicon layer communicates to the substrate. A first dielectric layer (119) is formed on the first doped polysiliocn layer, and is then patterned to define a storage node therein. Next, a second doped polysilicon layer (122) is formed on the first dielectric layer and the first doped polysilicon layer, and a second dielectric spacer (124) is formed on a sidewall of the second doped polysilicon layer. After etching the second doped polysilicon layer and the first doped polysilicon layer using the second dielectric spacer as a mask to expose surface of the first dielectric layer, a third doped polysiliocn spacer (126) is formed on a sidewall of the second dielectric spacer. The second dielectric spacer and the first dielectric layer are then removed, and a fourth dielectric layer (136) is formed on the first doped polysilicon layer, the second doped polysilicon layer, and the third doped polysiliocn spacer. Finally, a conductive layer (138) is formed on the fourth dielectric layer.

    Abstract translation: 公开了一种用于形成动态随机存取存储器单元的叉形电容器的方法。 该方法包括在半导体衬底(110)上形成第一掺杂多晶硅层(118),其中第一掺杂多晶硅层的至少一部分与衬底通信。 第一介电层(119)形成在第一掺杂多晶硅层上,然后被图案化以在其中限定存储节点。 接下来,在第一介电层和第一掺杂多晶硅层上形成第二掺杂多晶硅层(122),在第二掺杂多晶硅层的侧壁上形成第二介电隔离物(124)。 在使用第二介电间隔物作为掩模蚀刻第二掺杂多晶硅层和第一掺杂多晶硅层以暴露第一介电层的表面之后,在第二介电间隔物的侧壁上形成第三掺杂聚硅氧烷间隔物(126)。 然后去除第二电介质隔离物和第一介电层,并且在第一掺杂多晶硅层,第二掺杂多晶硅层和第三掺杂聚硅氧烷间隔物上形成第四介电层(136)。 最后,在第四电介质层上形成导电层(138)。

    Method for forming a high density shallow trench contactless nonvolatile
memory
    22.
    发明授权
    Method for forming a high density shallow trench contactless nonvolatile memory 失效
    用于形成高密度浅沟槽非接触非易失性存储器的方法

    公开(公告)号:US6008079A

    公开(公告)日:1999-12-28

    申请号:US48549

    申请日:1998-03-25

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    CPC classification number: H01L27/11521

    Abstract: The present invention proposes a method for fabricating a high-density shallow trench contactless nonvolatile memory. First, a stacked pad oxide/silicon nitride layer is deposited on the substrate and the buried bit line region is defined by a photoresist. An anisotropic etching follows to etch the silicon layer and then the n+ impurity ions are implanted to form the source and drain. After stripping the photoresist, a high temperature steam oxidation process is used to grow a thick field oxide, and the doped ions are active and driven in to form the buried bit lines simultaneously. The silicon nitride layer and the pad oxide layer are then removed, and the silicon substrate is recessed by using the field oxide as an etching mask. After rounding the trench corners by using thermal oxidation and etching back processes, a thin silicon oxy-nitride film is regrown. An in-situ doped polysilicon film is deposited to refill the trench region and then etch back by using a CMP process to form the floating gates. Next, the interpoly dielectric such as ultra-thin ONO film, and, the control gate formed of n+ doped polysilicon film, are sequentially built. After the word lines are defined, the nonvolatile memory is thus finished.

    Abstract translation: 本发明提出了一种制造高密度浅沟槽非接触非易失性存储器的方法。 首先,在衬底上沉积堆叠的衬垫氧化物/氮化硅层,并且掩模位线区域由光致抗蚀剂限定。 随后进行各向异性蚀刻以蚀刻硅层,然后注入n +杂质离子以形成源极和漏极。 在剥离光致抗蚀剂之后,使用高温蒸汽氧化工艺来生长厚的场氧化物,并且掺杂的离子是有源的并被驱动以同时形成掩埋的位线。 然后去除氮化硅层和焊盘氧化物层,并且通过使用场氧化物作为蚀刻掩模使硅衬底凹陷。 通过使用热氧化和蚀刻回流工艺对沟槽角进行四舍五入之后,重新生长薄的氮氧化硅膜。 沉积原位掺杂多晶硅膜以重新填充沟槽区域,然后通过使用CMP工艺来回蚀刻以形成浮动栅极。 接下来,顺序地构建诸如超薄ONO膜的互聚电介质,以及由n +掺杂多晶硅膜形成的控制栅极。 在定义字线之后,非易失性存储器被完成。

    Shallow trench isolation process
    23.
    发明授权
    Shallow trench isolation process 失效
    浅沟槽隔离工艺

    公开(公告)号:US5989977A

    公开(公告)日:1999-11-23

    申请号:US63210

    申请日:1998-04-20

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    Abstract: The present invention proposes a method for fabricating shallow trench regions for isolation. An oxide hard mask is utilized for the silicon etching. A thick thermal oxide film is created at and near the trench corners to prevent the gate wrap-around and corner parasitic leakage. Forming trench regions on a semiconductor substrate by using a thick pad oxide layer as an etching hard mask. A thermal oxide film is grown to recover the etching damages. An undoped LPCVD amorphous silicon film is then deposited on entire surface of the semiconductor substrate. A high temperature/pressure oxidation process follows to convert the undoped amorphous silicon film into thermal oxide. A thick CVD oxide layer is deposited on the semiconductor substrate. The oxide film outside the trench regions is removed by using a CMP process. Finally, the MOS devices are fabricated on the semiconductor substrate by standard processes, and thus complete the present invention.

    Abstract translation: 本发明提出了一种用于制造用于隔离的浅沟槽区域的方法。 氧化物硬掩模用于硅蚀刻。 在沟槽角处和附近产生厚的热氧化膜,以防止栅极缠绕和拐角寄生泄漏。 通过使用厚焊盘氧化物层作为蚀刻硬掩模,在半导体衬底上形成沟槽区域。 生长热氧化膜以回收蚀刻损伤。 然后将未掺杂的LPCVD非晶硅膜沉积在半导体衬底的整个表面上。 接着进行高温/高压氧化处理,以将未掺杂的非晶硅膜转化为热氧化物。 在半导体衬底上沉积厚的CVD氧化物层。 通过使用CMP工艺除去沟槽区域外的氧化膜。 最后,通过标准工艺在半导体衬底上制造MOS器件,从而完成了本发明。

    Reduced mask CMOS salicided process
    24.
    发明授权
    Reduced mask CMOS salicided process 失效
    减少面膜CMOS浸锌工艺

    公开(公告)号:US5989950A

    公开(公告)日:1999-11-23

    申请号:US013676

    申请日:1998-01-26

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    CPC classification number: H01L21/823842

    Abstract: The present invention includes forming an oxide layer, nitride on a substrate. An ion implantation is performed. A LPD-oxide is formed on P well. Subsequently, an ion implantation to dope phosphorus into the substrate to form N well. Then, the LPD-oxide is removed. The oxide layer and the silicon nitride layer are respectively removed. Subsequently, a thin gate oxide is regrown on the surface of the substrate. A polysilicon layers, a second nitride are deposited on the oxide layer. Polysilicon gates are patterned. An ion implantation is carried out to implant arsenic into the P well. A thin LPD-oxide is forged along the surface of the gate, the substrate on the P well. A thermal anneal process is used to condense the LPD-oxide. Simultaneously, an ultra thin silicon oxynitride layer is formed on the surface of N well. Next, BSG side wall spacers are formed on the side walls of the gates. The silicon nitride layer is removed. Self-align silicide (SALICIDE), polycide are respectively formed on the exposed substrate, gates. Then, an ion implantation is performed. Then, another ion implantation is next used. Finally, ultra shallow junction source and drain are formed adjacent to the gates by using a rapid thermal process (RTP).

    Abstract translation: 本发明包括在基板上形成氧化物层,氮化物。 进行离子注入。 在P阱上形成LPD氧化物。 随后,进行离子注入以将磷掺入底物以形成N。 然后,除去LPD-氧化物。 分别去除氧化物层和氮化硅层。 随后,在衬底的表面上重新生长薄栅氧化物。 多晶硅层,第二氮化物沉积在氧化物层上。 多晶硅栅极被图案化。 进行离子注入以将砷注入到P阱中。 沿着栅极的表面,P阱上的衬底锻造薄的LPD氧化物。 热退火工艺用于冷凝LPD氧化物。 同时,在N阱的表面上形成超薄氧氮化硅层。 接下来,在门的侧壁上形成BSG侧壁间隔物。 去除氮化硅层。 自对准硅化物(SALICIDE),多硅化物分别形成在暴露的基板上。 然后,进行离子注入。 然后,接下来使用另一种离子注入。 最后,通过使用快速热处理(RTP),在栅极附近形成超浅结点源极和漏极。

    Method to form metal-to-metal antifuse for field programmable gate array
applications using liquid phase deposition (LPD)
    25.
    发明授权
    Method to form metal-to-metal antifuse for field programmable gate array applications using liquid phase deposition (LPD) 失效
    使用液相沉积(LPD)形成用于现场可编程门阵列应用的金属对金属反熔丝的方法

    公开(公告)号:US5937281A

    公开(公告)日:1999-08-10

    申请号:US906552

    申请日:1997-08-05

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    CPC classification number: H01L23/5252 H01L27/11803 H01L2924/0002

    Abstract: A method of fabricating an antifuse structure for field programmable gate array (FPGA) applications is described. First, a field oxide layer for isolation is grown on the semiconductor silicon substrate. Then, a bottom electrode, a thin dielectric layer and a first top electrode layer are sequentially deposited on the surface of the field oxide layer. Next, a photoresist layer is coated on the surface of the first top electrode layer. Then, the first top electrode layer is patterned to form a top electrode stud. Next, a layer of silicon dioxide (SiO.sub.2) is deposited by Liquid Phase Deposition (LPD) to improve the overall profile of the antifuse structure. Thereafter, the photoresist pattern is removed. Next, a second top electrode layer is deposited overlaying the LPD-SiO.sub.2 layer and the top electrode stud. The top electrode that consists of the second top electrode layer and the top electrode stud is completed. The antifuse structure of FPGAs is accomplished.

    Abstract translation: 描述了一种制造用于现场可编程门阵列(FPGA)应用的反熔丝结构的方法。 首先,在半导体硅衬底上生长用于隔离的场氧化物层。 然后,在场氧化物层的表面上依次沉积底电极,薄电介质层和第一顶电极层。 接下来,在第一顶电极层的表面上涂覆光致抗蚀剂层。 然后,将第一顶部电极层图案化以形成顶部电极柱。 接下来,通过液相沉积(LPD)沉积二氧化硅(SiO 2)层,以改善反熔丝结构的整体轮廓。 此后,去除光致抗蚀剂图案。 接下来,沉积覆盖LPD-SiO 2层和顶部电极柱的第二顶部电极层。 完成由第二顶电极层和顶电极柱组成的顶电极。 实现了FPGA的反熔丝结构。

    Multi-crown capacitor for high density DRAMS
    26.
    发明授权
    Multi-crown capacitor for high density DRAMS 失效
    用于高密度DRAMS的多冠电容器

    公开(公告)号:US5933742A

    公开(公告)日:1999-08-03

    申请号:US708236

    申请日:1996-09-06

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    CPC classification number: H01L28/91 H01L27/10852 H01L28/92

    Abstract: A method of manufacturing multi-crown shape capacitors for use in semiconductor memories. The present invention uses the high etching selectivity between TEOS-oxide and polysilicon to fabricate the capacitor. using HSG-Si as an etching mask to etch the second dielectric layer to form dielectric pillars. An etching process is performed using the dielectric pillars as a mask to etching a portion of the first conductive layer and to etch away the remaining HSG-Si. Then side wall spacer are formed on the side walls of the dielectric pillars. Next, a selective etching process is used to define a multi-crown shape structure. Utilizing the pillars as a mold, the present invention can be used to form the multi-crown shaped structure to increase the surface area of the capacitor.

    Abstract translation: 一种制造用于半导体存储器的多冠状电容器的方法。 本发明使用TEOS氧化物和多晶硅之间的高蚀刻选择性来制造电容器。 使用HSG-Si作为蚀刻掩模来蚀刻第二介电层以形成介电柱。 使用介电柱作为掩模进行蚀刻工艺,以蚀刻第一导电层的一部分并蚀刻剩余的HSG-Si。 然后在介电柱的侧壁上形成侧壁间隔物。 接下来,使用选择性蚀刻工艺来限定多冠形状结构。 利用支柱作为模具,本发明可用于形成多冠形结构以增加电容器的表面积。

    CMOS transistors with self-aligned planarization twin-well by using
fewer mask counts
    27.
    发明授权
    CMOS transistors with self-aligned planarization twin-well by using fewer mask counts 失效
    具有自对准平面化双阱的CMOS晶体管通过使用较少的掩模计数

    公开(公告)号:US5929493A

    公开(公告)日:1999-07-27

    申请号:US52280

    申请日:1998-03-31

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    CPC classification number: H01L27/0928 H01L21/823892

    Abstract: The present invention discloses a structure for forming CMOS transistors with a self-aligned planarization twin-well by using fewer mask counts. An N-well is formed in the semiconductor substrate. Then, a P-well is formed against the N-well, and portion of the P-well is formed along the bottom of the N-well. An oxide region is formed on the surface of both the N- and P-wells, and covers portions of the N- and P-wells. A high energy and low dose boron blanket implantation is performed to increase the threshold voltage of the oxide region, which has been used for an ESD (Electro-Static Discharge) protection circuit. Punch-through stopping layers for the CMOS transistor are formed in the upper portion of the N-well. A BF.sub.2 ion implantation layer is formed at the top of both the N- and P-wells to increase the threshold voltages of the PMOSFET and NMOSFET transistors. A pad oxide layer is also formed to cover the top of the N- and P-wells, and portions of the pad oxide layer are then formed to be the gate oxide layer of the PMOSFET and NMOSFET transistors.

    Abstract translation: 本发明公开了一种通过使用更少的掩模计数来形成具有自对准平面化双阱的CMOS晶体管的结构。 在半导体衬底中形成N阱。 然后,相对于N阱形成P阱,并且沿着N阱的底部形成P阱的一部分。 在N阱和P阱的表面上形成氧化物区域,覆盖N阱和P阱的部分。 执行高能量和低剂量硼橡胶注入以增加已经用于ESD(静电放电)保护电路的氧化物区域的阈值电压。 用于CMOS晶体管的穿通停止层形成在N阱的上部。 在N阱和P阱的顶部形成BF 2离子注入层,以增加PMOSFET和NMOSFET晶体管的阈值电压。 还形成衬垫氧化物层以覆盖N阱和P阱的顶部,然后将衬垫氧化物层的部分形成为PMOSFET和NMOSFET晶体管的栅极氧化物层。

    Method of forming a multiple fin-pillar capacitor for a high density
dram cell
    28.
    发明授权
    Method of forming a multiple fin-pillar capacitor for a high density dram cell 有权
    形成高密度电池单元的多支柱电容器的方法

    公开(公告)号:US5907782A

    公开(公告)日:1999-05-25

    申请号:US134885

    申请日:1998-08-15

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    Abstract: The present invention is a method of manufacturing a high density capacitor for use in semiconductor memories. High etching selectivity between BPSG (borophosphosilicate glass) and CVD-oxide (chemical vapor deposition oxide) is used to fabricate a capacitor with a plurality of horizontal fins. First, a nitride layer is formed on a semiconductor substrate. A stacked layer consists of BPSG and silicon oxide formed on the nitride layer. Then a contact hole is formed in the stacked layer and the nitride layer. A highly selective etching is then used to etch the BPSG sublayers of the stacked layer. Next, a first polysilicon layer is formed in the contact hole and the stacked layer, subsequently, a dielectric layer is formed on the first polysilicon layer. Then, undoped hemispherical-grain silicon (HSG--Si) is formed on the dielectric layer. Next, a portion of the dielectric layer is etched using the HSG--Si layer as a hard mask to expose a portion of the first polysilicon layer. A second polysilicon layer is formed on the HSG--Si layer and the exposed first polysilicon layer. An etching back or CMP is used for planarization. Then photolithography and etching process is used to define the storage node. Next the stacked layer is removed by BOE solution. A dielectric film is then formed along the surface of the first and second polysilicon layer. Finally, a third polysilicon layer is formed on the dielectric film. Thus, a capacitor with multiple horizontal fins and vertical pillars is formed.

    Abstract translation: 本发明是制造用于半导体存储器的高密度电容器的方法。 使用BPSG(硼磷硅酸玻璃)和CVD氧化物(化学气相沉积氧化物)之间的高蚀刻选择性来制造具有多个水平翅片的电容器。 首先,在半导体衬底上形成氮化物层。 堆叠层由形成在氮化物层上的BPSG和氧化硅组成。 然后在堆叠层和氮化物层中形成接触孔。 然后使用高选择性蚀刻来蚀刻堆叠层的BPSG子层。 接下来,在接触孔和堆叠层中形成第一多晶硅层,随后在第一多晶硅层上形成介电层。 然后,在电介质层上形成未掺杂的半球形硅(HSG-Si)。 接下来,使用HSG-Si层作为硬掩模蚀刻介电层的一部分,以暴露第一多晶硅层的一部分。 在HSG-Si层和暴露的第一多晶硅层上形成第二多晶硅层。 蚀刻背面或CMP用于平坦化。 然后使用光刻和蚀刻工艺来定义存储节点。 接下来,堆叠层由BOE溶液除去。 然后沿着第一和第二多晶硅层的表面形成电介质膜。 最后,在电介质膜上形成第三多晶硅层。 因此,形成具有多个水平翅片和垂直柱的电容器。

    Method to form a capacitor for high density DRAM cell
    29.
    发明授权
    Method to form a capacitor for high density DRAM cell 失效
    形成高密度DRAM单元的电容器的方法

    公开(公告)号:US5899715A

    公开(公告)日:1999-05-04

    申请号:US23453

    申请日:1998-02-13

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    CPC classification number: H01L27/10852 H01L27/10817

    Abstract: A new method for the manufacturing of a capacitor for a DRAM is disclosed herein. The method for manufacturing a capacitor on a semiconductor wafer including the following steps. Firstly, sequentially forming a first dielectric layer, a first conductive layer, a second dielectric layer and a third dielectric layer formed on the semiconductor wafer. Secondary, the third dielectric layer and a portion of the second dielectric layer are etched. The portion of the second dielectric layer is isotropically etched to form a hemispherical cavity. Next, the second dielectric layer, the first conductive layer and the first dielectric layer is etched sequentially to form a hole in contact with a portion of the semiconductor wafer by using the third dielectric layer as a mask. Subsequently, the third dielectric layer is removed when etching the first dielectric layer. Afterword, a second conductive layer is formed on the second dielectric layer and in the hole. Next, a pattern for an underlying electrode is formed by anisotropically etching a portion of the second conductive layer, the second dielectric layer and the first conductive layer. Successively, the first dielectric layer is isotropically etched, and a fourth dielectric layer is formed on the underlying electrode. Finally, a third conductive layer is formed on the fourth dielectric layer to form an upperlying electrode of the capacitor.

    Abstract translation: 这里公开了用于制造用于DRAM的电容器的新方法。 包括以下步骤在半导体晶片上制造电容器的方法。 首先,依次形成在半导体晶片上形成的第一电介质层,第一导电层,第二电介质层和第三电介质层。 次级,第三介电层和第二介电层的一部分被蚀刻。 第二介电层的部分被各向同性地蚀刻以形成半球形腔。 接下来,通过使用第三介电层作为掩模,依次蚀刻第二电介质层,第一导电层和第一电介质层,以形成与半导体晶片的一部分接触的孔。 随后,当蚀刻第一介电层时,去除第三电介质层。 在第二介电层和孔中形成第二导电层。 接下来,通过各向异性蚀刻第二导电层,第二介电层和第一导电层的一部分来形成底层电极的图案。 接着,第一介电层被各向同性地蚀刻,并且在下面的电极上形成第四电介质层。 最后,在第四电介质层上形成第三导电层以形成电容器的上电极。

    Process to fabricate ultra-short channel nMOSFETs with self-aligned
silicide contact
    30.
    发明授权
    Process to fabricate ultra-short channel nMOSFETs with self-aligned silicide contact 失效
    制造具有自对准硅化物接触的超短沟道nMOSFET的工艺

    公开(公告)号:US5895244A

    公开(公告)日:1999-04-20

    申请号:US4449

    申请日:1998-01-08

    Applicant: Shye-Lin Wu

    Inventor: Shye-Lin Wu

    Abstract: The method of the present invention is a method of forming a gate oxide layer on the substrate. An undoped polysilicon layer is formed over the gate oxide layer. Then, a silicon nitride layer is formed over the undoped polysilicon layer. A doped polysilicon layer is formed over the silicon nitride layer. Next, the doped polysilicon layer is patterned to define a gate region. A thermal oxidation is performed on the patterned doped polysilicon gate region to oxidize a portion of the patterned doped polysilicon layer into a thermal oxide film. The thermal oxide film is removed by an etching process. A portion of the first dielectric layer is etched by using the residual doped polysilicon layer as a mask. The undoped polysilicon layer is etched by using the residual doped polysilicon layer and the residual first dielectric layer as a mask. Then, a PSG layer is deposited over the residual nitride layer and the substrate to serve as an ion diffusion source. Subsequently, the PSG layer is etched back to form side-wall spacers. A noble or refractory metal layer is deposited on all areas. Next, a high dose arsenic or phosphorus ion is implanted through the substrate to form first doped regions to serve as source and drain regions of the transistor. Finally, the two-step RTP annealing process is used to form a self-aligned silicided contact nMOSFET.

    Abstract translation: 本发明的方法是在基板上形成栅氧化层的方法。 在栅极氧化物层上方形成未掺杂的多晶硅层。 然后,在未掺杂的多晶硅层上形成氮化硅层。 在氮化硅层上形成掺杂多晶硅层。 接下来,将掺杂多晶硅层图案化以限定栅极区域。 在图案化的掺杂多晶硅栅极区域上进行热氧化,以将图案化的掺杂多晶硅层的一部分氧化成热氧化膜。 通过蚀刻工艺除去热氧化膜。 通过使用残余掺杂多晶硅层作为掩模来蚀刻第一介电层的一部分。 通过使用残余掺杂多晶硅层和残留的第一介电层作为掩模来蚀刻未掺杂的多晶硅层。 然后,在剩余氮化物层和衬底上沉积PSG层以用作离子扩散源。 随后,将PSG层回蚀刻形成侧壁间隔物。 高贵或难熔金属层沉积在所有区域上。 接下来,通过衬底注入高剂量的砷或磷离子,以形成用作晶体管的源极和漏极区域的第一掺杂区域。 最后,使用两步RTP退火工艺来形成自对准硅化物接触nMOSFET。

Patent Agency Ranking