Abstract:
A method for forming a fork-shaped capacitor of a dynamic random access memory cell is disclosed. The method includes forming a first doped polysilicon layer (118) over a semiconductor substrate (110), wherein at least a portion of the first doped polysilicon layer communicates to the substrate. A first dielectric layer (119) is formed on the first doped polysiliocn layer, and is then patterned to define a storage node therein. Next, a second doped polysilicon layer (122) is formed on the first dielectric layer and the first doped polysilicon layer, and a second dielectric spacer (124) is formed on a sidewall of the second doped polysilicon layer. After etching the second doped polysilicon layer and the first doped polysilicon layer using the second dielectric spacer as a mask to expose surface of the first dielectric layer, a third doped polysiliocn spacer (126) is formed on a sidewall of the second dielectric spacer. The second dielectric spacer and the first dielectric layer are then removed, and a fourth dielectric layer (136) is formed on the first doped polysilicon layer, the second doped polysilicon layer, and the third doped polysiliocn spacer. Finally, a conductive layer (138) is formed on the fourth dielectric layer.
Abstract:
The present invention proposes a method for fabricating a high-density shallow trench contactless nonvolatile memory. First, a stacked pad oxide/silicon nitride layer is deposited on the substrate and the buried bit line region is defined by a photoresist. An anisotropic etching follows to etch the silicon layer and then the n+ impurity ions are implanted to form the source and drain. After stripping the photoresist, a high temperature steam oxidation process is used to grow a thick field oxide, and the doped ions are active and driven in to form the buried bit lines simultaneously. The silicon nitride layer and the pad oxide layer are then removed, and the silicon substrate is recessed by using the field oxide as an etching mask. After rounding the trench corners by using thermal oxidation and etching back processes, a thin silicon oxy-nitride film is regrown. An in-situ doped polysilicon film is deposited to refill the trench region and then etch back by using a CMP process to form the floating gates. Next, the interpoly dielectric such as ultra-thin ONO film, and, the control gate formed of n+ doped polysilicon film, are sequentially built. After the word lines are defined, the nonvolatile memory is thus finished.
Abstract:
The present invention proposes a method for fabricating shallow trench regions for isolation. An oxide hard mask is utilized for the silicon etching. A thick thermal oxide film is created at and near the trench corners to prevent the gate wrap-around and corner parasitic leakage. Forming trench regions on a semiconductor substrate by using a thick pad oxide layer as an etching hard mask. A thermal oxide film is grown to recover the etching damages. An undoped LPCVD amorphous silicon film is then deposited on entire surface of the semiconductor substrate. A high temperature/pressure oxidation process follows to convert the undoped amorphous silicon film into thermal oxide. A thick CVD oxide layer is deposited on the semiconductor substrate. The oxide film outside the trench regions is removed by using a CMP process. Finally, the MOS devices are fabricated on the semiconductor substrate by standard processes, and thus complete the present invention.
Abstract:
The present invention includes forming an oxide layer, nitride on a substrate. An ion implantation is performed. A LPD-oxide is formed on P well. Subsequently, an ion implantation to dope phosphorus into the substrate to form N well. Then, the LPD-oxide is removed. The oxide layer and the silicon nitride layer are respectively removed. Subsequently, a thin gate oxide is regrown on the surface of the substrate. A polysilicon layers, a second nitride are deposited on the oxide layer. Polysilicon gates are patterned. An ion implantation is carried out to implant arsenic into the P well. A thin LPD-oxide is forged along the surface of the gate, the substrate on the P well. A thermal anneal process is used to condense the LPD-oxide. Simultaneously, an ultra thin silicon oxynitride layer is formed on the surface of N well. Next, BSG side wall spacers are formed on the side walls of the gates. The silicon nitride layer is removed. Self-align silicide (SALICIDE), polycide are respectively formed on the exposed substrate, gates. Then, an ion implantation is performed. Then, another ion implantation is next used. Finally, ultra shallow junction source and drain are formed adjacent to the gates by using a rapid thermal process (RTP).
Abstract:
A method of fabricating an antifuse structure for field programmable gate array (FPGA) applications is described. First, a field oxide layer for isolation is grown on the semiconductor silicon substrate. Then, a bottom electrode, a thin dielectric layer and a first top electrode layer are sequentially deposited on the surface of the field oxide layer. Next, a photoresist layer is coated on the surface of the first top electrode layer. Then, the first top electrode layer is patterned to form a top electrode stud. Next, a layer of silicon dioxide (SiO.sub.2) is deposited by Liquid Phase Deposition (LPD) to improve the overall profile of the antifuse structure. Thereafter, the photoresist pattern is removed. Next, a second top electrode layer is deposited overlaying the LPD-SiO.sub.2 layer and the top electrode stud. The top electrode that consists of the second top electrode layer and the top electrode stud is completed. The antifuse structure of FPGAs is accomplished.
Abstract:
A method of manufacturing multi-crown shape capacitors for use in semiconductor memories. The present invention uses the high etching selectivity between TEOS-oxide and polysilicon to fabricate the capacitor. using HSG-Si as an etching mask to etch the second dielectric layer to form dielectric pillars. An etching process is performed using the dielectric pillars as a mask to etching a portion of the first conductive layer and to etch away the remaining HSG-Si. Then side wall spacer are formed on the side walls of the dielectric pillars. Next, a selective etching process is used to define a multi-crown shape structure. Utilizing the pillars as a mold, the present invention can be used to form the multi-crown shaped structure to increase the surface area of the capacitor.
Abstract:
The present invention discloses a structure for forming CMOS transistors with a self-aligned planarization twin-well by using fewer mask counts. An N-well is formed in the semiconductor substrate. Then, a P-well is formed against the N-well, and portion of the P-well is formed along the bottom of the N-well. An oxide region is formed on the surface of both the N- and P-wells, and covers portions of the N- and P-wells. A high energy and low dose boron blanket implantation is performed to increase the threshold voltage of the oxide region, which has been used for an ESD (Electro-Static Discharge) protection circuit. Punch-through stopping layers for the CMOS transistor are formed in the upper portion of the N-well. A BF.sub.2 ion implantation layer is formed at the top of both the N- and P-wells to increase the threshold voltages of the PMOSFET and NMOSFET transistors. A pad oxide layer is also formed to cover the top of the N- and P-wells, and portions of the pad oxide layer are then formed to be the gate oxide layer of the PMOSFET and NMOSFET transistors.
Abstract:
The present invention is a method of manufacturing a high density capacitor for use in semiconductor memories. High etching selectivity between BPSG (borophosphosilicate glass) and CVD-oxide (chemical vapor deposition oxide) is used to fabricate a capacitor with a plurality of horizontal fins. First, a nitride layer is formed on a semiconductor substrate. A stacked layer consists of BPSG and silicon oxide formed on the nitride layer. Then a contact hole is formed in the stacked layer and the nitride layer. A highly selective etching is then used to etch the BPSG sublayers of the stacked layer. Next, a first polysilicon layer is formed in the contact hole and the stacked layer, subsequently, a dielectric layer is formed on the first polysilicon layer. Then, undoped hemispherical-grain silicon (HSG--Si) is formed on the dielectric layer. Next, a portion of the dielectric layer is etched using the HSG--Si layer as a hard mask to expose a portion of the first polysilicon layer. A second polysilicon layer is formed on the HSG--Si layer and the exposed first polysilicon layer. An etching back or CMP is used for planarization. Then photolithography and etching process is used to define the storage node. Next the stacked layer is removed by BOE solution. A dielectric film is then formed along the surface of the first and second polysilicon layer. Finally, a third polysilicon layer is formed on the dielectric film. Thus, a capacitor with multiple horizontal fins and vertical pillars is formed.
Abstract:
A new method for the manufacturing of a capacitor for a DRAM is disclosed herein. The method for manufacturing a capacitor on a semiconductor wafer including the following steps. Firstly, sequentially forming a first dielectric layer, a first conductive layer, a second dielectric layer and a third dielectric layer formed on the semiconductor wafer. Secondary, the third dielectric layer and a portion of the second dielectric layer are etched. The portion of the second dielectric layer is isotropically etched to form a hemispherical cavity. Next, the second dielectric layer, the first conductive layer and the first dielectric layer is etched sequentially to form a hole in contact with a portion of the semiconductor wafer by using the third dielectric layer as a mask. Subsequently, the third dielectric layer is removed when etching the first dielectric layer. Afterword, a second conductive layer is formed on the second dielectric layer and in the hole. Next, a pattern for an underlying electrode is formed by anisotropically etching a portion of the second conductive layer, the second dielectric layer and the first conductive layer. Successively, the first dielectric layer is isotropically etched, and a fourth dielectric layer is formed on the underlying electrode. Finally, a third conductive layer is formed on the fourth dielectric layer to form an upperlying electrode of the capacitor.
Abstract:
The method of the present invention is a method of forming a gate oxide layer on the substrate. An undoped polysilicon layer is formed over the gate oxide layer. Then, a silicon nitride layer is formed over the undoped polysilicon layer. A doped polysilicon layer is formed over the silicon nitride layer. Next, the doped polysilicon layer is patterned to define a gate region. A thermal oxidation is performed on the patterned doped polysilicon gate region to oxidize a portion of the patterned doped polysilicon layer into a thermal oxide film. The thermal oxide film is removed by an etching process. A portion of the first dielectric layer is etched by using the residual doped polysilicon layer as a mask. The undoped polysilicon layer is etched by using the residual doped polysilicon layer and the residual first dielectric layer as a mask. Then, a PSG layer is deposited over the residual nitride layer and the substrate to serve as an ion diffusion source. Subsequently, the PSG layer is etched back to form side-wall spacers. A noble or refractory metal layer is deposited on all areas. Next, a high dose arsenic or phosphorus ion is implanted through the substrate to form first doped regions to serve as source and drain regions of the transistor. Finally, the two-step RTP annealing process is used to form a self-aligned silicided contact nMOSFET.