Abstract:
A method of applying a conductive pattern of metal onto a web of indefinite length material. This method includes applying a metal containing composition onto the web in a predefined pattern, providing a roll having a very low thermal mass, and conveying the patterned web around the roll while simultaneously applying heat energy to the metal containing composition thereby converting the metal to a conductive pattern. This allows for flexible circuitry to be fabricated in an inexpensive roll-to-roll process.
Abstract:
Articles enabled by an injection molding process that molds parts on a carrier web located between mold halves and uses ultrasonic energy to assist flow of polymer melt into the mold cavity. One such article is a carrier web having a high density of molded parts, i.e., bearing an array of molded articles adhered to the web in rows and columns, the articles being spaced closer (center-to-center or edge-to-edge) than the diagonal spacing between articles in the next adjacent row and next adjacent column. Another such article is a microneedle array on a land no more than 250 μm thick on which at least 60% of the microneedles across the array are filled (i.e., completely formed).
Abstract:
A manufacturing system includes a sensing system that provides high-resolution feedback for web guiding and tension control. The system may be especially useful for web material that is manufactured to include micro-replicated structures with micron size scale. A micro-replication station forms a pattern of micro-replicated lenses on a web material. The sensing system illuminates a measurement area on the web material and detects an angular distribution of light exiting a set of the micro-replicated lenses within the first measurement area. A control system that adjusts at least one process control parameter of the transport system based on the detected angular distribution.
Abstract:
Articles enabled by an injection molding process that molds parts on a carrier web located between mold halves and uses ultrasonic energy to assist flow of polymer melt into the mold cavity. One such article is a carrier web having a high density of molded parts, i.e., bearing an array of molded articles adhered to the web in rows and columns, the articles being spaced closer (center-to-center or edge-to-edge) than the diagonal spacing between articles in the next adjacent row and next adjacent column. Another such article is a microneedle array on a land no more than 250 μm thick on which at least 60% of the microneedles across the array are filled (i.e., completely formed).
Abstract:
Injection molding parts onto a carrier web located between mold halves, each mold half having a cavity, resulting in molded articles having parts on both sides of the carrier web. Polymer flow into the cavities is assisted by application of ultrasonic energy to the mold. After the molding operation, mold halves are separated, and the carrier web is advanced, or indexed, to a next position for another molding sequence. Articles produced include lenses with part of the carrier web between lens halves, and a carrier web bearing an array of molded parts.
Abstract:
Injection molding, parts onto a carrier web (34) located between mold halves (18,20). Flow of polymer melt into the mold is assisted by application of ultrasonic energy to the mold cavity. After the molding operation, mold halves are separated, and the carrier web is advanced, or indexed, to a next position for another molding sequence. Molding apparatus comprises a moving mold face (20), that can move toward and away from a first mold member (18) (which can be stationary) in which the mold cavity is located, a means (24,25,26,30,32) for moving and/or indexing carrier web between the first mold member and the moving mold face, means (16) to inject polymer melt into the mold cavity, and an ultrasonic system (42) providing ultrasonic energy to the mold cavity. The carrier web can transport molded parts to subsequent process steps, such as coating, drying, inspection, curing, assembly or packaging.
Abstract:
An apparatus and method for fabricating electronic devices on a polymeric substrate provide for positionally constraining a polymer substrate on a platen, and heating the constrained polymer substrate to at least a glass transition temperature of the polymer substrate. A heat processable ink is applied to the constrained polymer substrate to form at least a portion of a layer of an electronic device thereon.
Abstract:
A method of controlling a moving web in relation to a selected transverse position comprising positioning a first positioning guide proximate a second positioning guide wherein the second positioning guide has a mechanism for positioning the web having minimal backlash. The web is passed through the first positioning guide and the second positioning guide. A sensor detects the transverse position of the moving web at the second positioning guide. The sensor transmits the transverse location of the web at the second positioning guide to a controller. The controller manipulates a zero-backlash actuator wherein the zero-backlash actuator is coupled to the second positioning guide such that the transverse position of the web is controllable to within a preselected dimension of the selected transverse position.
Abstract:
In general, techniques are described for the creation and execution of accurate models for the manufacture of complex, multi-layered materials. The techniques may be used to calculate variations of a process parameter within the material during the manufacturing process. A method comprises receiving segment data that partitions a manufacturing process into a set of segments having at least one layer of a material. For example, the segment data may partition the manufacturing processes along a path traversed by the material within the manufacturing process. The method further comprises receiving curvature data for the layers, and calculating values for a process parameter through the layers of the segments as a function of the curvature data. The method may comprise invoking a one-dimensional model, such as a one-dimensional finite difference model, to calculate the values for the defined segments and layers.
Abstract:
A product stacking apparatus and method employs one or more stations, each including a stationary stacking platform or a conveyor upon which spaced-apart pucks are coupled for travel thereon. A product delivery apparatus drives one or more movable webs to which segmented product sheets are removably affixed. The product delivery apparatus includes one or more rotatable lamination interfaces associated with each of the stations for transferring product sheets from the webs to the pucks on a repetitive basis to produce a stack of product sheets on the respective pucks. Each of the segmented product sheets may define all or a portion of an electrochemical cell, all or a portion of a pad including layers of film or sheet material, wherein a portion of each of the layers is provided with a bonding feature, or all or a portion of a pack comprising layers of medical dressing. A puck need not be in motion during the transfer of the product sheet from the lamination roll to the puck. The puck may or may not be attached to a conveyor, but the conveyor need not be in motion during the lamination or stack building process. In this case, a roller is moved across the puck and simultaneously rotated so a point on the surface of the roller interfaces with the puck at the same location on each pass.