Abstract:
Information storage devices and methods of manufacturing the same are provided. A magnetic track of the information storage device includes a magnetic layer in which at least one magnetic domain forming region and at least one magnetic domain wall forming region are alternately disposed in a lengthwise direction. The at least one magnetic domain forming regions has a different magnetic anisotropic energy relative to the at least one magnetic domain wall forming region. An intermediate layer is formed under the magnetic layer. The intermediate layer includes at least one first material region and at least one second material region. Each of the at least one first material regions and the at least one second material regions corresponds to one of the at least one magnetic domain forming regions and the at least one magnetic domain wall forming regions.
Abstract:
The present invention relates to a reaction vessel for fuel cells, and more particular to a reaction vessel capable of obtaining reaction temperature promptly at the time of initial operation and a reaction device to form a reforming device of the fuel cell using the same. The reaction device of the present invention includes a reaction vessel that includes a monolithic chain. The monolithic chain has a first wall, a second wall, and a layer of pleats interposed between the first wall and the second wall. A plurality of openings are formed on each of the top side and the bottom side of the monolithic chain. One of the first wall and the second wall being made of an insulating material. The layer of pleats is made of a conductive material, and electric power is applied to generate heat at initial reaction operation. Once the reaction is activated, the reaction vessel produces heat through an oxidation reaction.
Abstract:
A reforming reaction unit for a reformer, and a method of manufacturing the same are disclosed. One embodiment of the reforming reaction unit includes: a cylindrical structure having a hollow space inside thereof; a cover surrounding the outer surface of the cylindrical structure; and a disc plate having a plurality of holes and directly contacting the inner surface of the cover at a predetermined position of the cylindrical structure in a lengthwise direction. The cylindrical structure includes an upper part above the disc plate. The upper part has a thread formed on its outer surface. The thread is in direct contact with the inner surface of the cover. The cylindrical structure also includes a lower part below the disc plate. The lower part has an outer surface spaced apart from the inner surface of the cover.
Abstract:
A memory device using a spin hall effect, and methods of manufacturing and operating the memory device, include applying a first operational current to a bit line of the memory device such that a spin current is applied to a magnetic tunnel junction (MTJ) cell coupled to the bit line due to a material in the bit line, wherein the bit line is electrically connected to a word line via the MTJ cell, and the word line intersects the bit line.
Abstract:
Oscillators and method of operating the same are provided, the oscillators include a magnetic layer, and a magnetization fixing element configured to fix a magnetization direction of the magnetic layer. The oscillators generate a signal by using precession of a magnetic moment of the magnetic layer.
Abstract:
A storage node of a magnetic memory device includes: a lower magnetic layer, a tunnel barrier layer formed on the lower magnetic layer, and a free magnetic layer formed on the tunnel barrier. The free magnetic layer has a magnetization direction that is switchable in response to a spin current. The free magnetic layer has a cap structure surrounding at least one material layer on which the free magnetic layer is formed.
Abstract:
Oscillators and methods of manufacturing and operating an oscillator are provided, the oscillators include a base free layer having a variable magnetization direction, and at least one oscillation unit on the base free layer. The oscillation unit may include a free layer element contacting the base free layer and having a width less than a width of the base free layer, a pinned layer element separated from the free layer element, and a separation layer element between the free layer element and the pinned layer element. A plurality of oscillation units may be arranged on the base free layer.
Abstract:
An information storage device includes a magnetic track and a magnetic domain wall moving unit. The magnetic track has a plurality of magnetic domains and a magnetic domain wall between each pair of adjacent magnetic domains. The magnetic domain wall moving unit is configured to move at least the magnetic domain wall. The information storage device further includes a magneto-resistive device configured to read information recorded on the magnetic track. The magneto-resistive device includes a pinned layer, a free layer and a separation layer arranged there between. The pinned layer has a fixed magnetization direction. The free layer is disposed between the pinned layer and the magnetic track, and has a magnetization easy axis, which is non-parallel to the magnetization direction of the pinned layer.
Abstract:
Oscillators and a method of operating the same are provided, the oscillators include at least one oscillation device including a first magnetic layer having a magnetization direction that is variable, a second magnetic layer having a pinned magnetization direction, and a non-magnetic layer disposed between the first magnetic layer and the second magnetic layer. The oscillation device is configured to generate a signal having a set frequency. The oscillators further include a driving transistor having a drain connected to the at least one oscillation device, and a gate to which a control signal for controlling driving of the oscillation device is applied.
Abstract:
An oscillator includes: a plurality of free layers and a non-magnetic layer disposed between the plurality of free layers. Each of the plurality of free layers has perpendicular magnetic anisotropy or in-plane magnetic anisotropy. Magnetization directions of the free layers are periodically switched such that a signal within a given frequency band oscillates.