Abstract:
An embedded component substrate includes: a core layer; a first electrode provided on a top surface of the core layer with a first insulating layer therebetween; and a second electrode provided on a bottom surface of the core layer with a second insulating layer therebetween, wherein a cavity is formed in the embedded component substrate from a top surface thereof to expose the second insulating layer at a bottom of the cavity, wherein a placement region is defined on the bottom of the cavity, for accommodating an electronic component; and wherein the embedded component substrate further includes a pad electrode on a portion of the second insulating layer, exposed by the cavity, surrounding the placement region located on the bottom of the cavity, the pad electrode vertically protruding from a top surface of the exposed second insulating layer upwardly and being configured to electrically connect to the electronic component.
Abstract:
A substrate for embedding an imaging device includes: a core layer; a first multilayered wiring layer that is formed onto the core layer, the core layer and the first multilayered wiring layer having a cavity penetrating therethrough; a second multilayered wiring layer that is formed onto the core layer on a side opposite to the first multilayered wiring layer and that includes a conductive pattern formed at a position facing the cavity; a resin portion that is arranged inside the cavity and includes a bottom surface supported by the second multilayered wiring layer, a side face supported by the core layer, and a curved surface formed on a side opposite to the bottom surface; and an imaging device adhered along the curved surface inside the cavity.
Abstract:
In a first conductive layer and a third conductive layer that are respectively closest to a core layer having a storage portion that penetrates therethrough, four first penetrating holes and four first penetrating holes are formed so as to overlap part of an opening edge of the storage portion that is projected onto the first conductive layer and the third conductive layer, respectively.
Abstract:
The method of manufacturing a substrate includes: forming a penetrating hole in a base layer; inserting a metal dummy part in the penetrating hole; forming an insulating portion made of synthetic resin to fill a ring-shaped gap between the penetrating hole and the dummy part; forming lower insulating layers, covering the bottom surface of the dummy part, that are made of synthetic resin on the bottom surface of the base layer to be continuous with the insulating portion; forming upper insulating layers, covering the top surface of the dummy part, that are made of synthetic resin on the top surface of the base layer to be continuous with the insulating portion; forming an exposing hole by routing in the upper insulating layers to expose the top surface of the dummy part; and forming a cavity by removing the dummy part exposed through the exposing hole by etching.
Abstract:
In a camera module, a planar part, which is for mitigating deformation of the surface of a second insulating portion on which an imaging device is mounted, is embedded in the second insulating portion of a substrate so as to face the imaging device mounted on the surface (top surface) of the second insulating portion.