Time gain compensation circuit in an ultrasound receiver

    公开(公告)号:US10985708B2

    公开(公告)日:2021-04-20

    申请号:US15980771

    申请日:2018-05-16

    Abstract: The disclosure provides a time gain compensation (TGC) circuit. The TGC circuit includes an impedance network. A differential amplifier is coupled to the impedance network. The differential amplifier includes a first input port, a second input port, a first output port and a second output port. A first feedback resistor is coupled between the first input port and the first output port. A second feedback resistor is coupled between the second input port and the second output port. The impedance network provides a fixed impedance to the differential amplifier when a gain of the TGC circuit is changed from a maximum value to a minimum value.

    Delay-based residue stage
    23.
    发明授权

    公开(公告)号:US10903845B2

    公开(公告)日:2021-01-26

    申请号:US16941718

    申请日:2020-07-29

    Abstract: A clock-less delay comparator coupled to a first input signal and a second input signal, the clock-less delay comparator comprising: a first transistor having a control terminal coupled to the second input signal, a first current terminal coupled to a first voltage supply, and a second current terminal; a second transistor having a control terminal, a first current terminal coupled to the first voltage supply, and a second current terminal; a third transistor having a control terminal, a first current terminal coupled to the first voltage supply, and a second current terminal; a fourth transistor having a control terminal coupled to the first input signal, a first current terminal coupled to the first voltage supply, and a second current terminal; a fifth transistor having a control terminal coupled to the second input signal, a first current terminal, and a second current terminal coupled to the control terminal of the third transistor; a sixth transistor having a control terminal coupled to the first input signal, a first current terminal, and a second current terminal coupled to the control terminal of the second transistor and the second current terminal of the third transistor; a seventh transistor having a control terminal coupled to the control terminal of the second transistor, a first current terminal coupled to a second voltage supply, and a second current terminal coupled to the first current terminal of the fifth transistor; an eighth transistor having a control terminal coupled to the control terminal of the third transistor, a first current terminal coupled to the second voltage supply, and a second current terminal coupled to the first current terminal of the sixth transistor; a ninth transistor having a control terminal coupled to the first input signal, a first current terminal coupled to the second current terminal of the first transistor, and a second current terminal coupled to the second current terminal of the second transistor and the second current terminal of the fifth transistor; and a tenth transistor having a control terminal coupled to the second input signal, a first current terminal coupled to the second terminal of the fourth transistor, and a second current terminal coupled to the second current terminal of the third transistor.

    Delay-based residue stage
    24.
    发明授权

    公开(公告)号:US10778243B2

    公开(公告)日:2020-09-15

    申请号:US16860145

    申请日:2020-04-28

    Abstract: An analog-to-digital converter, comprising: a voltage to delay circuit having a voltage input, a threshold voltage input, a first output and a second output, wherein a leading edge of the first output is delayed, by a first delay magnitude, in relationship to a leading edge of the second output; and a first stage including: a first logic gate having a first input coupled to the first output of the voltage to delay circuit, a second input coupled to the second output of the voltage to delay circuit, and an output; and a first stage delay comparator having a first input coupled to the first output of the voltage to delay circuit, a second input coupled to the second output of the voltage to delay circuit, a sign signal output and a first stage delay comparator output, wherein the sign signal output represents whether the voltage input is greater than or less than the threshold voltage input. The analog-to-digital converter further includes a digital block having an input connected to the sign signal output of the delay comparator.

    Continuous time linear capacitive digital step attenuator

    公开(公告)号:US10476542B1

    公开(公告)日:2019-11-12

    申请号:US16274621

    申请日:2019-02-13

    Abstract: A digital step attenuator (DSA) includes a switch control circuit which receives the attenuated signal output by the DSA from a buffer and generates a tracked control signal for switches within the DSA. Some switch control circuits include a capacitor coupled to receive the buffered signal, a supply voltage, and a switch control logic sub-circuit for each switch. Each switch control logic sub-circuit receives a control signal, for either the gate or the bulk terminal of the switch, and generates the tracked control signal. In other embodiments, switch control circuits include a complementary MOSFET switching device coupled to receive a control signal, and a capacitor coupled to receive the buffered signal, both of which are connected to an output terminal for the tracked control signal. In those embodiments, the DSA includes a switch control circuit for each switch connected to the DSA output.

    Multi-Bit Voltage-to-Delay Conversion in Data Converter Circuitry

    公开(公告)号:US20250096813A1

    公开(公告)日:2025-03-20

    申请号:US18966610

    申请日:2024-12-03

    Abstract: An analog-to-digital converter circuit incorporating includes a multi-bit input buffer having a differential input and configured to generate, at a plurality of differential outputs, a plurality of residues of a differential input sample relative to a corresponding plurality of zero-crossing references. Chopping stages chop the residues, for example with a pseudo-random binary sequence. The circuit further includes zero-crossing comparators, each with differential inputs coupled to receive one of the chopped residues. The zero-crossing comparators are in an ordered sequence of zone thresholds within the input range of the circuit. Folding logic circuitry has inputs coupled to outputs of the comparators, and outputs a delay domain signal indicating a magnitude of the one of the residues relative to a nearest zone threshold. Digital stage circuitry generates a digital output word representing the received input sample responsive to the comparator outputs and the delay domain signal.

    Balun With Improved Common Mode Rejection Ratio

    公开(公告)号:US20240113678A1

    公开(公告)日:2024-04-04

    申请号:US18531264

    申请日:2023-12-06

    CPC classification number: H03H7/42 H01F27/28 H03H7/004 H03H7/38

    Abstract: A balun includes a first winding which has a first terminal coupled to an input, and a second terminal coupled to a reference potential terminal. The balun includes a second winding magnetically coupled to the first winding. The second winding has a first terminal coupled to a first differential output, a second terminal coupled to a second differential output, and a tap coupled to the reference potential terminal. The balun includes a first capacitor which has a first terminal coupled to the first winding and a second terminal coupled to the second winding. The balun includes a third winding which has a first terminal coupled to the reference potential terminal and a floating second terminal. The balun includes a second capacitor which has a first terminal coupled to the third winding and a second terminal coupled to the second winding.

Patent Agency Ranking