Abstract:
A method of additively manufacturing a composite part comprises depositing a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a photopolymer-resin component that is partially cured. The method also comprises delivering a predetermined or actively determined amount of curing energy at least to a portion of the segment of the continuous flexible line at a controlled rate while advancing the continuous flexible line toward the print path and after the segment of the continuous flexible line is deposited along the print path to at least partially cure at least the portion of the segment of the continuous flexible line.
Abstract:
A threaded adjustable-height insert may be installed in a bore of a sandwich panel, such that the insert may be configured to transfer a load to the sandwich panel. The threaded adjustable-height insert may include a first insert part and a second insert part that may be selectively operatively positioned with respect to each other. The overall height of the threaded adjustable-height insert may be adjusted by longitudinally sliding the second insert part with respect to the first insert part and rotating the second insert part with respect to the first insert part. Presently disclosed threaded adjustable-height inserts may be configured for flush installation in a sandwich panel. Methods of installing such threaded adjustable-height inserts and adjusting the height of the same are also disclosed.
Abstract:
A system (700) for additively manufacturing a composite part (102) comprises a delivery guide (112), movable relative to a surface (114). The delivery guide (112) is configured to deposit at least a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting-resin component (110). The thermosetting-resin component (110) comprises a first part (253) and a second part (255). The non-resin component (108) comprises a first element (271) and a second element (273). The system (700) further comprises a first resin-part applicator (236), configured to apply the first part (253) to the first element (271), and a second resin-part applicator (237), configured to apply the second part (255) to the second element (273). The system (700) also comprises a feed mechanism (104), configured to pull the first element (271) through the first resin-part applicator (236), to pull the second element (273) through the second resin-part applicator (237), and to push the continuous flexible line (106) out of the delivery guide (112).
Abstract:
A method (300) of additively manufacturing a composite part (102) is disclosed. The method (300) comprises depositing a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting resin component (110) that is not fully cured. The method (300) further comprises, while advancing the continuous flexible line (106) toward the print path (122), delivering a predetermined or actively determined amount of curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106) at a controlled rate after the segment (120) of the continuous flexible line (106) is deposited along the print path (122) to at least partially cure at least the portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A system (100) for additively manufacturing a composite part (102) is disclosed. The system (100) comprises a delivery guide (112), movable relative to a surface (114). The delivery guide (112) is configured to deposit at least a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting resin component (110) that comprises a first part (253) and a second part (255) of a thermosetting resin (252). The print path (122) is stationary relative to the surface (114). The delivery guide (112) comprises a first inlet (170) configured to receive the non-resin component (108), and a second inlet (250) configured to receive at least the first part (253) of the thermosetting resin (252). The delivery guide (112) is further configured to apply the first part (253) and the second part (255) of the thermosetting resin (252) to the non-resin component (108). The system 100 further comprises a feed mechanism (104), configured to push the continuous flexible line (106) out of the delivery guide (112).
Abstract:
A system (100) for additively manufacturing a composite part (102) is disclosed. The system (100) comprises a delivery guide (112), movable relative to a surface (114). The delivery guide (112) is configured to deposit at least a segment (120) of a continuous flexible line (106) along a print path (122). The print path (122) is stationary relative to the surface (114). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting-epoxy-resin component (110) that is partially cured. The system (100) also comprises a feed mechanism (104), configured to push the continuous flexible line (106) through the delivery guide (112). The system (100) further comprises a cooling system (234), configured to maintain the thermosetting-epoxy-resin component (110) of the continuous flexible line (106) below a threshold temperature prior to depositing the segment (120) of the continuous flexible (106) along the print path (122) via the delivery guide (112).
Abstract:
A system for additively manufacturing a composite part (102) comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting resin component that comprises a first part and a second part of a thermosetting resin. The print path is stationary relative to the surface. The delivery guide comprises a first inlet configured to receive the non-resin component, and a second inlet configured to receive at least the first part of the thermosetting resin. The delivery guide is further configured to apply the first part and the second part of the thermosetting resin to the non-resin component. The system 100 further comprises a feed mechanism, configured to push the continuous flexible line out of the delivery guide.
Abstract:
A method of additively manufacturing a composite part comprises depositing a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and further comprises a photopolymer-resin component that is uncured. The method further comprises delivering a predetermined or actively determined amount of curing energy at least to a portion of the segment of the continuous flexible line at a controlled rate while advancing the continuous flexible line toward the print path and after the segment of the continuous flexible line is deposited along the print path to at least partially cure at least the portion of the segment of the continuous flexible line.
Abstract:
A threaded adjustable-height insert may be installed in a bore of a sandwich panel, such that the insert may be configured to transfer a load to the sandwich panel. The threaded adjustable-height insert may include a first insert part and a second insert part that may be selectively operatively positioned with respect to each other. The overall height of the threaded adjustable-height insert may be adjusted by longitudinally sliding the second insert part with respect to the first insert part and rotating the second insert part with respect to the first insert part. Presently disclosed threaded adjustable-height inserts may be configured for flush installation in a sandwich panel. Methods of installing such threaded adjustable-height inserts and adjusting the height of the same are also disclosed.
Abstract:
A system for additively manufacturing a composite part comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting-resin component. The thermosetting-resin component comprises a first part and a second part. The system further comprises a first resin-part applicator, configured to apply a first quantity of the first part to the non-resin component, and a second resin-part applicator, configured to apply a second quantity of the second part to the first quantity of the first part of a thermosetting resin, applied to the non-resin component. The system also comprises a feed mechanism, configured to pull the non-resin component through the first resin-part applicator and the second resin-part applicator, and to push the continuous flexible line out of the delivery guide.