摘要:
The problem of reducing noise in image sensing devices, especially NIR detectors, is solved by providing ground connections for the reflectors. The reflectors may be grounded through vias that couple the reflectors to grounded areas of the substrate. The grounded areas of the substrate may be P+ doped areas formed proximate the surface of the substrate. In particular, the P+ doped areas may be parts of photodiodes. Alternatively, the reflectors may be grounded through a metal interconnect structure formed over the front side of the substrate.
摘要:
In some embodiments, the present disclosure relates to an image sensor, including a first photodiode and a second photodiode disposed in a semiconductor substrate. A floating diffusion node is disposed along a frontside of the semiconductor substrate and between the first and second photodiodes. A partial backside deep trench isolation (BDTI) structure is disposed within the semiconductor substrate and between the first and second photodiodes. The partial BDTI extends from a backside of the semiconductor substrate and is spaced from the floating diffusion node. A full BDTI structure extends from the backside of the semiconductor substrate to the frontside of the semiconductor substrate.
摘要:
In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
摘要:
A method for manufacturing a back-side illumination (BSI) complementary metal-oxide-semiconductor (CMOS) image sensor with a vertical transfer gate structure for improved quantum efficiency (QE) and global shutter efficiency (GSE) is provided. A sacrificial dielectric layer is formed over a semiconductor region. A first etch is performed into the sacrificial dielectric layer to form an opening exposing a photodetector in the semiconductor region. A semiconductor column is formed in the opening. A floating diffusion region (FDR) is formed over the semiconductor column and the sacrificial dielectric layer. A second etch is performed into the sacrificial dielectric layer to remove the sacrificial dielectric layer, and to form a lateral recess between the FDR and the photodetector. A gate is formed filling the lateral recess and laterally spaced from the semiconductor column by a gate dielectric layer. The BSI CMOS image sensor resulting from the method is also provided.
摘要:
A back-side illumination (BSI) complementary metal-oxide-semiconductor (CMOS) image sensor using a vertical transfer gate structure for improved quantum efficiency (QE) and global shutter efficiency (GSE) is provided. A semiconductor column extends vertically from a photodetector, towards a back-end-of-line (BEOL) stack. A floating diffusion region (FDR) is vertically spaced from the photodetector by the semiconductor column. The FDR comprises a sidewall surface laterally offset from a neighboring sidewall surface of the semiconductor column to define a lateral recess between the FDR and the photodetector. A gate dielectric layer lines the sidewall surface of the semiconductor column and is arranged in the lateral recess. A gate is arranged laterally adjacent to the gate dielectric layer and filling the lateral recess. Further, a method for manufacturing the vertical transfer gate structure is provided.
摘要:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a first gate stack and a second gate stack over the semiconductor substrate. The semiconductor device structure also includes a first doped structure over the semiconductor substrate and adjacent to the first gate stack. The first doped structure includes a III-V compound semiconductor material and a dopant. The semiconductor device structure further includes a second doped structure over the semiconductor substrate and adjacent to the second gate stack. The second doped structure includes the III-V compound semiconductor material and the dopant. One of the first doped structure and the second doped structure is an n-type semiconductor structure, and the other one of the first doped structure and the second doped structure is a p-type semiconductor structure.
摘要:
The present disclosure, in some embodiments, relates to an image sensing integrated chip. The image sensing integrated chip includes a semiconductor substrate having sidewalls defining one or more trenches on opposing sides of a region of the semiconductor substrate. One or more dielectrics are disposed within the one or more trenches. The semiconductor substrate has a plurality of flat surfaces arranged between the one or more trenches. Adjacent ones of the plurality of flat surfaces define a plurality of triangular shaped protrusions and alternative ones of the plurality of flat surfaces are substantially parallel to one another, as viewed along a cross-sectional view.
摘要:
Various embodiments of the present disclosure are directed towards a semiconductor structure including a crack-stop structure disposed within a semiconductor substrate. The semiconductor substrate has a back-side surface and a front-side surface opposite the back-side surface. Photodetectors are disposed within the semiconductor substrate and are laterally spaced within a device region. An interconnect structure is disposed along the front-side surface. The interconnect structure includes a seal ring structure. A crack-stop structure is disposed within the semiconductor substrate and overlies the seal ring structure. The crack-stop structure continuously extends around the device region.
摘要:
The present disclosure relates to a CMOS image sensor having a doped isolation structure separating a photodiode and a pixel device, and an associated method of formation. In some embodiments, the CMOS image sensor has a doped isolation structure separating a photodiode and a pixel device. The photodiode is arranged within the substrate away from a front-side of the substrate. A pixel device is disposed at the front-side of the substrate overlying the photodiode and is separated from the photodiode by the doped isolation structure. Comparing to previous image sensor designs, where an upper portion of the photodiode is commonly arranged at a top surface of a front-side of the substrate, now the photodiode is arranged away from the top surface and leaves more room for pixel devices. Thus, a larger pixel device can be arranged in the sensing pixel, and short channel effect and noise level can be improved.
摘要:
The present disclosure relates to a CMOS image sensor having a doped isolation structure separating a photodiode and a pixel device, and an associated method of formation. In some embodiments, the CMOS image sensor has a doped isolation structure separating a photodiode and a pixel device. The photodiode is arranged within the substrate away from a front-side of the substrate. A pixel device is disposed at the front-side of the substrate overlying the photodiode and is separated from the photodiode by the doped isolation structure. Comparing to previous image sensor designs, where an upper portion of the photodiode is commonly arranged at a top surface of a front-side of the substrate, now the photodiode is arranged away from the top surface and leaves more room for pixel devices. Thus, a larger pixel device can be arranged in the sensing pixel, and short channel effect and noise level can be improved.