摘要:
A silicon carbide semiconductor device provided as a semiconductor chip includes a substrate, a drift layer on the substrate, an insulation film on the drift layer, a semiconductor element formed in a cell region of the drift layer, a surface electrode formed on the drift layer and electrically coupled to the semiconductor element through an opening of the insulation film, and a passivation film formed above the drift layer around the periphery of the cell region to cover an outer edge of the surface electrode. The passivation film has an opening through which the surface electrode is exposed outside. A surface of the passivation film is made uneven to increase a length from an inner edge of the opening of the passivation film to a chip edge measured along the surface of the passivation film.
摘要:
A diode includes the following: an n type semiconductor region; a p type semiconductor region provided in a part of a front face of the n type semiconductor region; an anode electrode (front face electrode) which adjoins a front face of the n type semiconductor region and a front face of the p type semiconductor region while at least forming a Schottky junction on a front face of the n type semiconductor region; and an insulating region which has a right-hand side (first side) and a left-hand side (second side) adjacent to the n type semiconductor region, the right-hand side facing a second n type semiconductor region which is located below the Schottky junction, the left-hand side facing a first n type semiconductor region which is located below a pn junction between the n type semiconductor region and the p type semiconductor region.
摘要:
A semiconductor device is provided in which the contact resistance of the interface between an electrode and the semiconductor substrate is reduced. The semiconductor device includes a 4H polytype SiC substrate, and an electrode formed on a surface of the substrate. A 3C polytype layer, which extends obliquely relative to the surface of the substrate and whose end portion at the substrate surface is in contact with the electrode, is formed at the surface of the substrate. The 3C polytype layer has a lower bandgap than 4H polytype. Hence, electrons present in the 4H polytype region pass through the 3C polytype layer and reach the electrode. More precisely, the width of the passageway of the electrons is determined by the thickness of the 3C polytype layer. Consequently, with this semiconductor device, in which the passageway of the electrons is narrow, the electrons are able to reach the electrode at a speed close to the theoretical value, by the quantum wire effect. In this way, the contact resistance can be reduced in the semiconductor device.
摘要:
A photoelectric transducing element with a high polymer substrate, being characterized in that the element comprises a conductor layer formed on a flexible high polymer insulation film substrate and comprising at least one pair of independent conductor patterns and a photoelectric transducing layer superposed on the patterned portion of the conductor layer and consisting of a thin film of amorphous photoconductive material formed by means of a thin film forming means.