摘要:
High-speed serial interface or transceiver circuitry on a programmable logic device integrated circuit (“PLD”) includes features that permit the PLD to satisfy a wide range of possible user needs or applications. This range includes both high-performance applications and applications in which reduced power consumption by the PLD is important. In the latter case, any one or more of various features can be used to help reduce power consumption.
摘要:
In high speed receiver circuitry (e.g., on a programmable logic device (PLD) or the like), decision feedback equalization (DFE) circuitry is used to at least partly cancel unwanted offset (e.g., from other elements of the receiver). The data input to the receiver is tristated; and then each DFE tap coefficient is varied in turn to find coefficient values that are associated with transitions between oscillation and non-oscillation of the receiver output signal. The coefficient values found in this way are used to select trial values. If the output signal of the receiver does not oscillate when these trial values are used, the process is repeated starting from these (or subsequent) trial values until a final set of trial values does allow oscillation of the receiver output signal.
摘要:
Methods and apparatus are provided for varying the bandwidth of a loop filter in a loop circuit (e.g., a phase-locked loop circuit). The loop filter can include first and second resistor circuitries coupled to a capacitor. One of the resistor circuitries can be coupled to an output of the loop circuit in response to selection of a mode of operation. The resistor circuitries can each include a plurality of resistors that can be selectively coupled in series to the capacitor or bypassed. In addition, the output of the loop circuit can be coupled to a second capacitor. Either or both of the capacitors can be programmable.
摘要:
High-speed serial interface or transceiver circuitry on a programmable logic device integrated circuit (“PLD”) includes features that permit the PLD to satisfy a wide range of possible user needs or applications. This range includes both high-performance applications and applications in which reduced power consumption by the PLD is important. In the latter case, any one or more of various features can be used to help reduce power consumption.
摘要:
A transmitter circuit is operable to provide an output signal in response to a first periodic signal. A multiplexer circuit is operable to provide a second periodic signal as a selected signal during a first phase of operation. The multiplexer circuit is operable to provide the output signal of the transmitter circuit as the selected signal during a second phase of operation. A sampler circuit is operable to generate first samples of the selected signal during the first phase of operation. The sampler circuit is operable to generate second samples of the selected signal during the second phase of operation. A duty cycle control circuit is operable to adjust a duty cycle of the first periodic signal based on the first and the second samples.
摘要:
High-speed serial data signal transmitter and/or receiver circuitry is able to dynamically switch between handling data at two (or more) different data rates. Such a switch can be made very rapidly and with no requirement for reprogramming or reconfiguring the circuitry. Circuitry for glitchlessly switching between clock signals having different frequencies is also provided and may be used in the above-mentioned transmitter and/or receiver circuitry.
摘要:
A circuit includes phase detection circuitry, a clock signal generation circuit, a first frequency divider, and a second frequency divider. The phase detection circuitry compares an input clock signal to a feedback signal to generate a control signal. The clock signal generation circuit generates a periodic output signal in response to the control signal. The first frequency divider divides a frequency of the periodic output signal by a first value to generate a first frequency divided signal. The second frequency divider divides the frequency of the periodic output signal by a second value to generate a second frequency divided signal. The first and the second frequency divided signals are routed to the phase detection circuitry as the feedback signal during different time intervals.
摘要:
Signal detection circuitry for a serial interface oversamples the input—i.e., samples the input multiple times per clock cycle—so that the likelihood of missing a signal is reduced. Sampling may be done with a regenerative latch which has a large bandwidth and can latch a signal at high speed. The amplitude threshold for detection may be programmable, particularly in a programmable device. Thus, between the use of a regenerative latch which is likely to catch any signal that might be present, and the use of oversampling to avoid the problem of sampling at the wrong time, the likelihood of failing to detect a signal is greatly diminished. Logic, such as a state machine, may be used to determine whether the samples captured s do or do not represent a signal. That logic may be programmable, allowing a user to set various parameters for signal detection.
摘要:
A circuit includes a first area, a second area, and a third area. The second area includes a locked loop circuit that generates a clock signal. The locked loop circuit receives a supply voltage that is isolated from noise generated in the first area. The third area includes multiple quads of channels and a clock line coupled to route at least one clock signal generated in the second area to the channels in each of the quads. The third area is separate from the second area in the circuit.