Abstract:
A substrate processing method includes: performing a both-surface cleaning processing in which a first cleaning body, which ejects the fluid to the one surface or is brought into contact with the one surface, and subsequently moves both the first cleaning body and a second cleaning body, which is in contact with the remaining surface of the upper surface and the lower surface of the substrate and rotated around a first vertical axis, horizontally in synchronization with each other toward an outer peripheral portion of the substrate, and performing a side end cleaning processing in which a third cleaning body is rotated around a second vertical axis and brought into contact with the side end of the substrate to clean the side end of the substrate while simultaneously performing the both-surface cleaning processing.
Abstract:
A dressing apparatus includes a bus member which is equipped with a ceiling plate and a circular or polygonal cylindrical skirt portion provided at a bottom surface of the ceiling plate and which is configured to accommodate a polishing pad from thereabove. The bus member includes a dual fluid nozzle configured to jet a cleaning liquid and a gas onto a polishing surface of the polishing pad; a dress board configured to come into contact with the polishing surface of the polishing pad; and a rinse nozzle configured to supply a rinse liquid onto a contact surface between the polishing surface of the polishing pad and the dress board. A cleaning liquid, a fragment of a grindstone or a sludge is suppressed from being scattered around by the skirt portion.
Abstract:
A substrate cleaning apparatus configured to clean a surface of a substrate having a circular shape by bringing a cleaning member into contact with the surface of the substrate and rotating the substrate and the cleaning member relatively is provided. A contact region of the cleaning member which comes into contact with the surface of the substrate is widened in a radial shape from a center side of the substrate toward a peripheral side thereof.
Abstract:
A substrate processing apparatus includes a substrate holder, a first cleaning body, a first moving mechanism, a second cleaning body, a second moving mechanism, and a controller. The first cleaning body cleans one of the upper surface and the lower surface of the substrate held by the substrate holder by ejecting fluid thereto or by coming into contact therewith. The second cleaning body cleans the other one of the upper surface and the lower surface of the substrate held by the substrate holder by coming into contact therewith. The controller controls the first moving mechanism and the second moving mechanism to perform a both-surface cleaning processing in which the first cleaning body which ejects the fluid to one surface or is in contact with the upper surface and the second cleaning body which is in contact with the lower surface are horizontally moved in synchronization with each other.
Abstract:
A dressing apparatus 200 includes a bus member 203 which is equipped with a ceiling plate 201 and a circular or polygonal cylindrical skirt portion 202 provided at a bottom surface of the ceiling plate 201 and which is configured to accommodate a polishing pad 131 from thereabove. The bus member 203 includes a dual fluid nozzle 204 configured to jet a cleaning liquid and a gas onto a polishing surface of the polishing pad 131; a dress board 205 configured to come into contact with the polishing surface of the polishing pad 131; and a rinse nozzle 206 configured to supply a rinse liquid onto a contact surface between the polishing surface of the polishing pad 131 and the dress board 205. A cleaning liquid, a fragment of a grindstone or a sludge is suppressed from being scattered around by the skirt portion 202.
Abstract:
A developing apparatus includes: a substrate holder that hold a substrate horizontally; a developer nozzle that supplies a developer onto the substrate to form a liquid puddle; a turning flow generation mechanism including a rotary member that rotates about an axis perpendicular to the substrate while the rotary member is being in contact with the liquid puddle thereby to generate a turning flow in the liquid puddle of the developer formed on the substrate; and a moving mechanism for moving the turning flow generation mechanism along a surface of the substrate. The line-width uniformity of a pattern can be improved by forming turning flows in a desired region of the substrate and stirring the developer.
Abstract:
A substrate cleaning method includes: a first step in which a cleaning liquid is ejected from a nozzle N2 to a central portion of a wafer W; a second step in which a dry gas is ejected from a nozzle N3 to the central portion of the wafer W to form a dry area; a third step in which the cleaning liquid is ejected from the nozzle N2 while the nozzle N2 is moved from a central side of the wafer W to a peripheral side thereof; a fourth step in which a width of an intermediate area generated between a wet area and the dry area is acquired; and a fifth step in which, when the width of the intermediate area exceeds a predetermined threshold value, a process parameter is changed such that the width of the intermediate area becomes the threshold value or less.
Abstract:
The present invention is a developing treatment apparatus for performing development by supplying a developing solution to a substrate having a front surface coated with a positive resist or a negative resist and then subjected to exposure wherein a movable cup is raised to introduce one of scattering developing solutions for the positive and negative resists into an inner peripheral flow path of a cup and the movable cup is lowered to introduce the other of scattering developing solutions for the positive and negative resists into an outer peripheral flow path of the cup, and the developing solution introduced into the inner peripheral flow path and the developing solution introduced into the outer peripheral flow path are separately drained.
Abstract:
A liquid processing method includes: accommodating a substrate horizontally in each of a first processing region and a second processing region, for performing therein a process on the substrate by a processing solution from a nozzle; rotating a rotary body about a vertical axis; keeping a plurality of processing nozzles provided at the rotary body; supplying different kinds of processing solutions to the substrate from the plurality of processing nozzles; holding a processing nozzle selected from the plurality of processing nozzles by a nozzle holder provided at the rotary body; transferring the nozzle holder into selected one of the first and the second processing regions by a nozzle transfer device; and rotating the rotary body by a rotation driving unit so as to allow a front of the nozzle holder in a forward/backward direction thereof to face the selected one of the first and the second processing regions.