Abstract:
Methods and arrangements involving portable devices, such as smartphones and tablet computers, are disclosed. In a particular embodiment, a system stores information from a sensor sub-system as RDF triples. The sensor sub-system may comprise a physical or logical sensor, such as a camera, a microphone, an accelerometer, a GPS receiver, an image classifier, and a user activity sensor. The triples can be stored in a user's smartphone or other portable device, or in the cloud. The stored data can then be acted on by a processor—again, in the user's smartphone, in another portable device, or in the cloud. A great variety of other features and arrangements are also detailed.
Abstract:
Methods and arrangements involving portable devices, such as smartphones and tablet computers, are disclosed. One arrangement enables a creator of content to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another arrangement utilizes the camera of a smartphone to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some of the detailed technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
Abstract:
A user gestures with a wireless mobile phone device to control some aspect of its operation, or the operation of a remote system with which the device communicates. (The gestures may be sensed by tracking movement of a feature across a field of view of a mobile phone device camera.) The resultant operation may additionally depend on other data obtained by the wireless device, e.g., obtained from an electronic or physical object, or sensed from the environment. A variety of other features and arrangements are also detailed.
Abstract:
Auxiliary data encoded in multimedia content signals synchronizes rendering of different media content types in multimedia content. This auxiliary data includes one or more digital watermarks that are used to synchronize playback of the different media content signals. The digital watermarks identify different media signals, identify rendering locations, such as temporal or spatial areas in a first signal where the media signal is to be rendered, or provide rendering control scripts for controlling playback.
Abstract:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). Some aspects of the technology allow users to easily transfer displayed content from cell phone screens onto a television screens for easier viewing, or vice versa for content portability. Others enable users to participate interactively in entertainment content, such as by submitting plot directions, audio input, character names, etc., yielding more engaging, immersive, user experiences. Still other aspects of the technology involve a program directory database, compiled automatically from information reported by network nodes that watch and identify content traffic passing into (and/or out of) networked computers. By identifying content resident at a number of different repositories (e.g., web sites, TV networks, P2P systems, etc.), such a directory allows cell phone users to identify the diversity of sources from which desired content can be obtained—some available on a scheduled basis, others available on demand. Depending on the application, the directory information may be transparent to the user—serving to identify sources for desired content, from which application software can pick for content downloading, based, e.g., on context and stored profile data. A great number of other features and arrangements are also detailed.
Abstract:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). Some aspects of the technology allow users to easily transfer displayed content from cell phone screens onto a television screens for easier viewing, or vice versa for content portability. Others enable users to participate interactively in entertainment content, such as by submitting plot directions, audio input, character names, etc., yielding more engaging, immersive, user experiences. Still other aspects of the technology involve a program directory database, compiled automatically from information reported by network nodes that watch and identify content traffic passing into (and/or out of) networked computers. By identifying content resident at a number of different repositories (e.g., web sites, TV networks, P2P systems, etc.), such a directory allows cell phone users to identify the diversity of sources from which desired content can be obtained—some available on a scheduled basis, others available on demand. Depending on the application, the directory information may be transparent to the user—serving to identify sources for desired content, from which application software can pick for content downloading, based, e.g., on context and stored profile data. A great number of other features and arrangements are also detailed.
Abstract:
An image is processed to encode a digital watermark, with different regions thereof processed using different levels of watermark intensity. In an image comprised of elements of differing sizes (e.g., halftone shapes of different sizes, or lines of different width), the different regions can be defined by reference to the sizes of elements contained therein. Regions characterized by relatively small elements can be watermarked at a relatively low intensity. Regions characterized by relatively large elements can be watermarked at a relatively high intensity. A variety of other features are also discussed.
Abstract:
Mobile phones and other portable devices are equipped with a variety of technologies by which existing functionality can be improved, and new functionality can be provided. Some aspects relate to visual search capabilities, and determining appropriate actions responsive to different image inputs. Others relate to processing of image data. Still others concern metadata generation, processing, and representation. Yet others concern user interface improvements. Other aspects relate to imaging architectures, in which a mobile phone's image sensor is one in a chain of stages that successively act on packetized instructions/data, to capture and later process imagery. Still other aspects relate to distribution of processing tasks between the mobile device and remote resources (“the cloud”). Elemental image processing (e.g., simple filtering and edge detection) can be performed on the mobile phone, while other operations can be referred out to remote service providers. The remote service providers can be selected using techniques such as reverse auctions, through which they compete for processing tasks. A great number of other features and arrangements are also detailed.
Abstract:
The present invention relates generally to security documents (e.g., banknotes, ID documents, certificates, packaging, etc.). One claim recites a security document including a security pattern provided thereon. The security pattern includes a line structure in which lines width or line spacing is adjusted to convey a predefined, machine-readable pattern in a frequency transform domain. Another claim recites a security document including a security pattern provided thereon. The security pattern is provided in the security document through modifications to a color provided on the security document. The security pattern conveys a predefined, machine-readable pattern in a frequency transform domain. Of course, additional combinations and claims are provided as well.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.