摘要:
A nitride semiconductor laser chip that operates with reduced electric power consumption and helps achieve cost reduction has: an active layer formed of a nitride semiconductor; a nitride semiconductor layer formed above the active layer; a ridge portion formed in a part of the nitride semiconductor layer; and an electrically conductive film having a light-absorbing property and formed at least in a region outside the ridge portion above the nitride semiconductor layer. The ridge portion has a ridge width of 2 μm or more but 6 μm or less.
摘要:
A nitride semiconductor laser chip is provided that can not only improve its COD level but also prevent its I-L characteristic curve from rising steeply and that can reduce an operating voltage. The nitride semiconductor laser chip includes layers constituting a nitride semiconductor layer and formed on an n-type GaN substrate, mirror facets including a light emission mirror facet and a light reflection mirror facet, a p-side ohmic contact formed on an upper contact layer to reach the mirror facets and a p-side pad contact formed in a region only a distance L1 away from the light emission mirror facet. The thickness d of the p-side ohmic contact and the distance L1 from the p-side ohmic contact to the light emission mirror facet are adjusted such that the amount of current injected into the light emission mirror facet is 20% or more but 70% or less of the amount of current injected into an area directly below the p-side pad contact.
摘要:
In a nitride semiconductor laser chip so structured as to suppress development of a step on nitride semiconductor layers, the substrate has the (1-100) plane as the principal plane, the resonator facet is perpendicular to the principal plane, and, in the cleavage surface forming the resonator facet, at least by one side of a stripe-shaped waveguide, an etched-in portion is formed as an etched-in region open toward the surface of the nitride semiconductor layers.
摘要:
A worn type electronic device comprises: a light emitting element for emitting a light having a specified wave length and a light guide means for guiding the light emitted from the light emitting element in a specified direction; the light emitting element disposed in a body of the worn type electronic device, wherein a light emission of the light emitting element is controlled based on the control of the worn type electronic device; and the light guide means including at least one of a body side light guide means disposed in the body of the worn type electronic device and a band side light guide means disposed in a band, wherein the light emitted from the light emitting element is emitted from the surface of the body of the worn type electronic device via the body side light guide means; or wherein the light emitted from the light emitting element is emitted from the surface of the band via the band side light guide means.
摘要:
According to an aspect of the present invention, a nitride semiconductor laser device includes a nitride semiconductor active layer, and a stripe-shaped waveguide for guiding light generated in the active layer. At least one pair of light-absorbing films are provided in at least local regions on the opposite sides of the stripe-shaped waveguide, to reach a distance within 0.3 μm from the waveguide. According to another aspect of the present invention, a gan-based semiconductor laser device includes first conductivity type semiconductor layers, a semiconductor active layer and second conductivity type semiconductor layers stacked sequentially. The laser device further includes a ridge stripe provided to cause a refractive index difference for confinement of light in a lateral direction crossing a longitudinal direction of a cavity, and a current-introducing window portion provided on the ridge stripe. The current-introducing window portion includes a narrow portion that is locally narrowed compared to the width of the ridge stripe.
摘要:
In connection with a nitride semiconductor laser device optimal for example for optical pickup and an optical information reproduction apparatus having superior condensation characteristics, the semiconductor laser device includes a substrate of nitride semiconductor, a lower clad layer of nitride semiconductor stacked thereon, an active layer stacked thereon, an upper clad layer of nitride semiconductor stacked thereon, and a contact layer of AlaInbGa1−a−bN stacked thereon having a lattice constant larger than the substrate of nitride semiconductor, and the device is cleaved and thus divided to have a surface serving as a resonator mirror.
摘要:
In a wafer having an LD structure 251 formed on a GaN-based substrate 250, cleavage guide grooves 252 are formed in its surface by scribing from above the LD structure 251 with a diamond needle. The cleavage guide grooves 252 are formed one along each of stripe-shaped waveguides 253 formed parallel to the direction of the wafer, and are formed in the shape of broken lines in the direction of the wafer.