摘要:
There is disclosed a method for coating nanometer metal particles. The step includes three steps. At the first step, a substrate is provided. At the second step, the substrate is coated with a metal layer. At the third step, the metal layer is annealed so that the metal layer is transformed into nanometer metal particles.
摘要:
A method is disclosed for making a thin-film poly-crystalline silicon solar cell. In the method, there is provided an ITO-glass substrate by coating a glass substrate with a transparent and conductive ITO film. An amorphous silicon film is grown on the ITO-glass substrate. An aluminum film is grown on the amorphous silicon film. The aluminum film and the amorphous silicon film are annealed and therefore converted and interchanged into an aluminum-silicon alloy film and a p+ poly-crystalline silicon film, respectively. In a low-temperature plasma-based deposition process, a p− poly-crystalline silicon film is coated on the p+ poly-crystalline silicon film, and an n+ poly-crystalline silicon film is coated on the p− poly-crystalline silicon film. An ohmic contact is provided on the transparent and conductive ITO film. Other ohmic contacts are provided on the n+ poly-crystalline silicon film. An anti-reflection film is coated on the n+ poly-crystalline silicon film.
摘要:
A method is disclosed for making a thin-film poly-crystalline silicon solar cell. In the method, there is provided an ITO-glass substrate by coating a glass substrate with a transparent and conductive ITO film. An amorphous silicon film is grown on the ITO-glass substrate. An aluminum film is grown on the amorphous silicon film. The aluminum film and the amorphous silicon film arte annealed and therefore converted into an aluminum-silicon alloy film and a p+ poly-crystalline silicon film, respectively. In a low-temperature plasma-based deposition process, a p− poly-crystalline silicon film is coated on the p+ poly-crystalline silicon film, and an n+ poly-crystalline silicon film is coated on the p− poly-crystalline silicon film. An ohm contact is provided on the transparent and conductive ITO film. Other ohm contacts are provided on the n+ poly-crystalline silicon film. An anti-reflection film is coated on the n+ poly-crystalline silicon film.
摘要:
Disclosed is a method for making a nickel film for use as an electrode of an n-p diode or solar cell. A light source is used to irradiate an n-type surface of the n-p diode or solar cell, thus producing electron-hole pairs in the n-p diode or solar cell. For the electric field effect at an n-p interface, electrons drift to and therefore accumulate on the n-type surface. With a plating agent, the diode voltage is added to the chemical potential for electroless plating of nickel on the n-type surface. The nickel film can be used as a buffer layer between a contact electrode and the diode or solar cell. The nickel film reduces the contact resistance to prevent a reduced efficiency of the diode or solar cell that would otherwise be caused by diffusion of the atoms of the electrode in following electroplating.
摘要:
A white light photodiode has a film layer and an ultraviolet (UV) photodiode. The film layer is made of an oxide rich in silicon; and is formed through a chemical vapor deposition. A white light can be generated by exciting the film layer with a UV light from the UV photodiode.
摘要:
A carbon nanotube is prepared under a non-vacuum environment. An atmospheric pressure chemical vapor deposition (APCVD) is processed with an external high frequency source and a perpendicularly-supplied gas material source for a cold-wall heating treatment. The carbon nanotube is thus obtained with a vertically aligned arrangement at a high speed and a pure quality for production.
摘要:
A distribution layer of silicon quantum dots are fabricated. After the layer is exposed to sun light for a while, the layer absorbs energy and produces pairs of electron and hole. By limiting the movement of the electrons and their moving directions through the structure obtained, the efficiency of an optoelectronic conversion is enhanced.
摘要:
An amorphous silicon (Si) film is taken to form a metal silicide of Si—Al(aluminum) under a high temperature. Al atoms is diffused into the amorphous Si film for forming the metal silicide of Si—Al as nucleus site. Then through heating and annealing, a microcrystalline or nano-crystalline silicon thin film is obtained. The whole process is only one process and is done in only one reacting chamber.
摘要:
The present invention provides a luminescent component with silicon quantum dots and its fabricating method, where the luminescent component includes a light-emitting device of high luminescent efficiency, large-area luminescence, cheap raw material and low producing cost.
摘要:
An in-situ gettering method for removing impurities from the surface and interior of a upgraded metallurgical grade silicon wafer is continuously conducted in a reaction chamber. Chloride gas is mixed with carrier gas. The gaseous mixture is used to clean the surface of the silicon wafer. Then, the gaseous mixture is used to form a porous structure on the surface of the silicon wafer before hot annealing is executed. Finally, the gaseous mixture is used to execute hot etching on the surface of the silicon wafer and remove the porous structure from the surface of the silicon wafer. As the chloride gas is used to clean the surface of the silicon wafer and form the porous structure on the surface of the silicon wafer, external gettering is improved. Moreover, interstitial-type metal impurities are effectively removed from the interior of the silicon wafer.