Abstract:
A replacement gate process is disclosed. A substrate and a dummy gate structure formed on the substrate is provided, wherein the dummy gate structure comprises a dummy layer on the substrate, a hard mask layer on the dummy layer, spacers at two sides of the dummy layer and the hard mask layer, and a contact etch stop layer (CESL) covering the substrate, the spacers and the hard mask layer. The spacers and the CESL are made of the same material. Then, a top portion of the CESL is removed to expose the hard mask layer. Next, the hard mask layer is removed. Afterward, the dummy layer is removed to form a trench.
Abstract:
A method for manufacturing a semiconductor device is provided. A first stack structure and a second stack structure are formed to respectively cover a portion of a first fin structure and a second fin structure. Subsequently, a spacer is respectively formed on the sidewalls of the fin structures through an atomic layer deposition process and the composition of the spacers includes silicon carbon nitride. Afterwards, a interlayer dielectric is formed and etched so as to expose the hard mask layers. A mask layer is formed to cover the second stack structure and a portion of the dielectric layer. Later, the hard mask layer in the first stack structure is removed under the coverage of the mask layer. Then, a dummy layer in the first stack structure is replaced with a conductive layer.
Abstract:
A method for manufacturing semiconductor structures includes providing a substrate having a plurality of mandrel patterns and a plurality of dummy patterns, simultaneously forming a plurality of first spacers on sidewalls of the mandrel patterns and a plurality of second spacers on sidewalls of the dummy patterns, and removing the second spacers and the mandrel patterns to form a plurality of spacer patterns on the substrate.
Abstract:
A semiconductor structure includes a first gate and a second gate, a first spacer and a second spacer, two first epitaxial structures and two second epitaxial structures. The first gate and the second gate are located on a substrate. The first spacer and the second spacer are respectively located on the substrate beside the first gate and the second gate. The first epitaxial structures and the second epitaxial structures are respectively located in the substrate beside the first spacer and the second spacer, wherein the first spacer and the second spacer have different thicknesses, and the spacing between the first epitaxial structures is different from the spacing between the second epitaxial structures. Moreover, the present invention also provides a semiconductor process forming said semiconductor structure.
Abstract:
A method for manufacturing a semiconductor device is provided. A first stack structure and a second stack structure are formed to respectively cover a portion of a first fin structure and a second fin structure. Subsequently, a spacer is respectively formed on the sidewalls of the fin structures through an atomic layer deposition process and the composition of the spacers includes silicon carbon nitride. Afterwards, a interlayer dielectric is formed and etched so as to expose the hard mask layers. A mask layer is formed to cover the second stack structure and a portion of the dielectric layer. Later, the hard mask layer in the first stack structure is removed under the coverage of the mask layer. Then, a dummy layer in the first stack structure is replaced with a conductive layer.
Abstract:
An epitaxial process includes the following steps. A substrate including a first area and a second area is provided. A first gate and a second gate are formed respectively on the substrate of the first area and the second area. A first spacer and a second spacer are respectively formed on the substrate beside the first gate and the second gate at the same time. A first epitaxial structure is formed beside the first spacer and then a second epitaxial structure is formed beside the second spacer by the first spacer and the second spacer respectively.
Abstract:
A method for forming a semiconductor device comprises the following steps: first, a substrate is provided, a first photo-etching process is carried out with a first photomask to form at least one device structure and a plurality of compensation structures, wherein the first photomask comprises at least one device pattern and a plurality of dummy patterns. A photoresist layer is then formed on the device structure and each compensation structures; a second photo-etching process is then carried out with a second photomask to remove each compensation structure.
Abstract:
A shallow trench isolation (STI) and method of forming the same is provided. The STI structure comprises an upper insulating portion and a lower insulating portion, wherein the lower insulating portion includes a first insulator and an insulating layer surrounding the first insulator, the upper insulating portion includes a second insulator and a buffer layer surrounding the second insulator. A part of the buffer layer interfaces between the first insulator and the second insulator, and the outer sidewall of the buffer layer and the sidewall of the first insulator are leveled.