Abstract:
A structure of memory device is provided. The structure of memory device includes a transistor formed on a substrate. A contact structure is disposed on a source/drain region of the transistor. A conductive layer is disposed on the contact structure. Four memory structures is disposed on the conductive layer to form a quadrilateral structure.
Abstract:
A structure of memory device is provided. The structure of memory device includes a transistor formed on a substrate. A contact structure is disposed on a source/drain region of the transistor. A conductive layer is disposed on the contact structure. Four memory structures is disposed on the conductive layer to form a quadrilateral structure.
Abstract:
A semiconductor device is provided, including a lower conducting layer formed above a substrate, an upper conducting layer, and a memory cell structure formed on the lower conducting layer (such as formed between the lower and upper conducting layers). The memory cell structure includes a bottom electrode formed on the lower conducting layer and electrically connected to the lower conducting layer, a transitional metal oxide (TMO) layer formed on the bottom electrode, a TMO sidewall oxides formed at sidewalls of the TMO layer, a top electrode formed on the TMO layer, and spacers formed on the bottom electrode. The upper conducting layer is formed on the top electrode and electrically connected to the top electrode.
Abstract:
A semiconductor structure includes a memory unit structure. The memory unit structure includes a transistor, a first electrode, two second electrode, and two resistive random access memory (RRAM) elements. The first electrode and the two second electrodes are disposed in a horizontal plane. The first electrode is disposed between the two second electrodes. The first electrode and the two second electrodes are disposed in parallel. The first electrode is coupled to a source region of the transistor. One of the two RRAM elements is disposed between the first electrode and one of the two second electrodes. The other one of the two RRAM elements is disposed between the first electrode and the other one of the two second electrodes.
Abstract:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a bottom metal layer, a resistive random access memory (ReRAM) cell structure, and an upper metal layer. The bottom metal layer is located above the substrate. The ReRAM cell structure is formed on the bottom metal layer. The ReRAM cell structure includes a bottom electrode, a memory cell layer, a top electrode, and a spacer. The memory cell layer is formed on the bottom electrode. The top electrode is formed on the memory cell layer. The spacer is formed on two sides of the bottom electrode, the memory cell layer and the top electrode. The upper metal layer is electrically connected to and directly contacting the top electrode.
Abstract:
The present invention provides a semiconductor device. The semiconductor device includes a contact structure disposed in a first dielectric layer, a second dielectric layer disposed on the first dielectric layer and having an opening disposed therein, a spacer disposed in the opening and partially covering the contact structure, and a resistive random-access memory (RRAM) disposed on the contact structure and directly contacting the spacer, wherein the RRAM includes a bottom electrode, a top electrode, and a switching resistance layer disposed between the bottom electrode and the top electrode.
Abstract:
A semiconductor device includes a substrate with a memory region and a logic region, a logic gate stack, and a non-volatile gate stack. The substrate has a recess disposed in the memory region. The logic gate stack is disposed in the logic region and has a first top surface. The non-volatile gate stack is disposed in the recess and has a second top surface. The second top surface is lower than the first top surface by a step height.
Abstract:
A semiconductor device with embedded cell is provided. A silicon substrate has a first area with at least one first cell and a second area with at least one second cell. The first cell is positioned in the first area and formed in a trench of the silicon substrate, and the second cell is positioned in the second area and formed on the silicon substrate. The first cell includes a first dielectric layer formed on sidewalls and a bottom of the trench, a floating gate formed on the first dielectric layer and embedded in the trench, a second dielectric layer formed on the floating gate and embedded in the trench, and a control gate formed on the second dielectric layer and embedded in the trench, wherein the control gate is separated from the floating gate by the second dielectric layer.
Abstract:
The invention provides a non-volatile memory and a fabricating method thereof. The non-volatile memory includes a substrate, an embedded-type charge storage transistor, and a selection transistor. The substrate has an opening. The embedded-type charge storage transistor is disposed in the substrate. The embedded-type charge storage transistor includes a charge storage structure and a conductive layer. The charge storage structure is disposed on the substrate in the opening. The conductive layer is disposed on the charge storage structure and fills the opening. The selection transistor is disposed on the substrate at one side of the embedded-type charge storage transistor, wherein the selection transistor includes a metal gate structure. The non-volatile memory has excellent charge storage capacity.
Abstract:
A split gate NVM device includes a semiconductor substrate, an ONO structure disposed on the semiconductor substrate, a first gate electrode disposed on the ONO structure, a second gate electrode disposed on the semiconductor substrate, adjacent to and insulated from the first gate electrode and the ONO structure, a first doping region with a first conductivity formed in the semiconductor substrate and adjacent to the ONO structure, a second doping region with the first conductivity formed in the semiconductor substrate and adjacent to the second gate electrode, and a third doping region with the first conductivity formed in the semiconductor substrate, disposed between the first doping region and the second doping region and adjacent to the ONO structure and the second gate electrode.