Abstract:
A power device includes a substrate, an ion well in the substrate, a body region in the ion well, a source doped region in the body region, a drain doped region in the ion well, and gates on the substrate between the source doped region and the drain doped region. The gates include a first gate adjacent to the source doped region, a second gate adjacent to the drain doped region, and a stacked gate structure between the first gate and the second gate.
Abstract:
A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
Abstract:
A semiconductor device includes a substrate, having cell region and high-voltage region. A memory cell is on the substrate within the cell region. The memory cell includes a memory gate structure and a selection gate structure on the substrate. A first spacer is sandwiched between or respectively on sidewalls of the memory cell structure and the selection gate structure. First high-voltage transistor is on the substrate within the high-voltage region. A first composite gate structure of the first high-voltage transistor includes a first gate structure on the substrate, an insulating layer with a predetermined thickness on the substrate in a -like structure or an L-like structure at cross-section, and a second gate structure on the insulating layer along the -like structure or the L-like structure. The selection gate structure and the second gate structure are originated from a same preliminary conductive layer.
Abstract:
A method of integrating memory and metal-oxide-semiconductor (MOS) processes is provided, including steps of forming an oxide layer and a nitride layer on a substrate, forming a field oxide in a first area by an oxidation process with the nitride layer as a mask, wherein the oxidation process simultaneously forms a top oxide layer on the nitride layer, removing the top oxide layer, the nitride layer and the oxide layer in the first area, forming a polysilicon layer on the substrate, and patterning the polysilicon layer into MOS units in the first area and memory units in a second area.
Abstract:
A nonvolatile memory cell includes a substrate having a drain region, a source region, and a channel region between the drain region and the source region. A floating gate and a select gate are disposed on the channel region. A control gate is disposed on the floating gate. An erase gate is disposed on the source region. The erase gate includes a lower end portion that extends into a major surface of the substrate.
Abstract:
A method of fabricating a semiconductor device includes providing a substrate with a memory region and a logic region, forming a recess of the substrate in the memory region, forming a non-volatile gate stack in the recess, and forming a logic gate stack in the logic region after forming the non-volatile gate stack.
Abstract:
The flash memory includes a stacked gate disposed on a substrate. The stacked gate includes an erase gate and two floating gates. Each floating gate has an acute angle pointing toward the erase gate. There is a high electric field formed around the acute angle so that the flash memory can perform an erase mode even at a lower operational voltage. Furthermore, the flash memory does not use any control gate to perform a write mode.
Abstract:
A flash memory structure includes a memory gate on a substrate, a select gate adjacent to the memory gate, and an oxide-nitride spacer between the memory gate and the select gate, where the oxide-nitride spacer further includes an oxide layer and a nitride layer having an upper nitride portion and a lower nitride portion, and the upper nitride portion is thinner than the lower nitride portion.
Abstract:
A method for fabricating non-volatile memory device is disclosed. The method includes the steps of: providing a substrate having a stack structure thereon; performing a first oxidation process to form a first oxide layer on the substrate and the stack structure; etching the first oxide layer for forming a first spacer adjacent to the stack structure; performing a second oxidation process to form a second oxide layer on the substrate; forming a dielectric layer on the first spacer and the second oxide layer; and etching the dielectric layer for forming a second spacer.
Abstract:
A method for programming a non-volatile memory cell is described. The memory cell includes a substrate, a gate over the substrate, a charge-trapping structure at least between the substrate and the gate, and first and second S/D regions in the substrate beside the gate. The method includes performing a channel-initiated secondary electron (CHISEL) injection process to inject electrons to the charge-trapping structure.