Abstract:
Systems and methods are provides for changing a user interface for a multi-screen device. The user interface can change based on the movement of a window. The system can receive a user interface event that modifies the display of windows in the user interface. Upon receiving the user interface event, the system determines if a window has been covered or uncovered. If a window has been covered, the window is placed in a sleep state. If a window is uncovered, the window is activated from a sleep state. A sleep state is a window state where an application associated with the window does not receive user interface inputs and/or does not render the window.
Abstract:
Embodiments are described for handling situations when a window or application is repositioned and clipped in a multi-screen device. In embodiments, if the window is repositioned such that it cannot be displayed entirely on one display, but would otherwise spillover or spill onto another display, the window or application is clipped. Such clipping is performed based on the size and location of the window and the size and location of the display.
Abstract:
Systems and methods are provides for changing a user interface for a multi-screen device. The user interface can change based on the movement of a window. The system can receive a user interface event that modifies the display of windows in the user interface. Upon receiving the user interface event, the system determines if a window has been covered or uncovered. If a window has been covered, the window is placed in a sleep state. If a window is uncovered, the window is activated from a sleep state. A sleep state is a window state where an application associated with the window does not receive user interface inputs and/or does not render the window.
Abstract:
Embodiments are described for handling situations when a window or application is repositioned and clipped in a multi-screen device. In embodiments, if the window is repositioned such that it cannot be displayed entirely on one display, but would otherwise spillover or spill onto another display, the window or application is clipped. Such clipping is performed based on the size and location of the window and the size and location of the display.
Abstract:
Methods and devices for selectively presenting a user interface in a dual screen device. More particularly, the method includes providing a gallery for the dual screen device. The gallery can present one or more images in a user interface. The gallery user interface can adapt to changes in the device configuration. Further, the gallery can display images or videos in the various configurations.
Abstract:
Presenting a plurality of windows on a display of a mobile device can comprise displaying a first window on the display. The first window can be a dual-display window displayed on both a first and second display portion of the display. In response to a touch gesture, a second window can be presented on at least one of the first and second display portions. When the second window is a dual-display window, the second window can be displayed in the first and second display portions. When the second window is not a dual-display window, the second window can be displayed on one of the first and second display portions and a third window can be displayed on another one of the first and second display portions. When the third window is a dual-display window, it can be displayed on the other one of the first and second display portions.
Abstract:
A multi-display device is adapted to be dockable or otherwise associatable with an additional device. In accordance with one exemplary embodiment, the multi-display device is dockable with a smartpad. The exemplary smartpad can include a screen, a touch sensitive display, a configurable area, a gesture capture region(s) and a camera. The smartpad can also include a port adapted to receive the device. The exemplary smartpad is able to cooperate with the device such that information displayable on the device is also displayable on the smartpad. Furthermore, any one or more of the functions on the device are extendable to the smartpad, with the smartpad capable of acting as an input/output interface or extension of the smartpad. Therefore, for example, information from one or more of the displays on the multi-screen device is displayable on the smartpad.
Abstract:
A multi-display device is adapted to be dockable or otherwise associatable with an additional device. In accordance with one exemplary embodiment, the multi-display device is dockable with a smartpad. The exemplary smartpad can include a screen, a touch sensitive display, a configurable area, a gesture capture region(s) and a camera. The smartpad can also include a port adapted to receive the device. The exemplary smartpad is able to cooperate with the device such that information displayable on the device is also displayable on the smartpad. Furthermore, any one or more of the functions on the device are extendable to the smartpad, with the smartpad capable of acting as an input/output interface or extension of the smartpad. Therefore, for example, information from one or more of the displays on the multi-screen device is displayable on the smartpad.
Abstract:
Embodiments are described for handling situations when a window or application is repositioned and clipped in a multi-screen device. In embodiments, if the window is repositioned such that it cannot be displayed entirely on one display, but would otherwise spillover or spill onto another display, the window or application is clipped. Such clipping is performed based on the size and location of the window and the size and location of the display.