摘要:
The invention relates to monitoring the area in front of a vehicle by means of an apparatus that comprises at least two imaging devices (110, 120). Provided are a first imaging device (110), which covers a first imaging angle, and a second imaging device (120), which covers a second, greater imaging angle. The first imaging device (110) covers a first zone (111) of the area in front of the vehicle, while at the same time, the second imaging device (120) covers a second zone (121) of the area in front of the vehicle. The two imaging devices (110, 120) are positioned spaced, in particular spaced laterally, from one another such that a central area (140) is covered by both the first and the second imaging devices (110, 120). By fusing the data acquired by the imaging devices (110, 120), a stereo image of the central area is generated, while monoscopic images are generated of those zones that are each covered by only a first or a second imaging device.
摘要:
Embodiments of the invention relate to the dynamic creation of TT paths in a large computer network having computer nodes, communication channels, and distribution modules (DMs), which all have access to a global time base, wherein a scheduling instance, aimed at establishing a time-controlled path with specified path time characteristics from a transmitting to a receiving node along an existing virtual connection (VC), requests from each DM in the VC all the TT path descriptor lists (TTPDLs) confirmed by said DMs, then transmits the specified path time characteristics and all confirmed TTPDLs to a dynamic scheduler that creates a new TTPDL for each DM in the VC, the existing reserved TTPDLs of the DMs affected remaining unchanged, wherein the corresponding new TTPDLs are transmitted to each DM in the VC, and wherein each DM in the VC reserves the TT path requested and confirms the reservation to the scheduling instance.
摘要:
A process to detect a failure of a constituent system (110 . . . 113) in a system of systems (1) consisting of a number of constituent systems (111 . . . 113) which exchange messages through a communications system (120), in which every constituent system (111 . . . 113) has a global time with a known granularity g, and at least one constituent system creates, at periodic creation times (210, 211) determined a priori from the progression of the global time, a time-triggered life-sign message, the time of transmission (211, 221) of this life-sign message in the time-triggered communications system (120), determined a priori from the progression of the global time, is synchronized with the creation time of this life-sign message, and the time of receipt (212, 222) of this life-sign message, determined a priori from the progression of the global time, is synchronized with the timeout time point (213, 223), determined a priori from the progression of the global time, of a monitor (130) of this life-sign message monitoring the arrival of the life-sign message, wherein an error message is triggered at the timeout time point if no life-sign message has arrived at the expected time of receipt (222).
摘要:
The invention relates to a device for controlling the braking and/or steering and/or acceleration in a motor vehicle, wherein the device has a number of different sensor components, two diverse sensor fusion components, a man/machine interface component and a preferably intelligent actuator controller component, wherein each of these components constitutes a fault-containment unit and has a TTEthernet communications interface, and wherein all components are connected to a central TTEthernet message distribution unit, and wherein the components communicate with one another exclusively with use of standardized Ethernet messages, and wherein a diagnosis unit for time-correct monitoring of the exchanged messages can be connected to the TTEthernet message distribution unit.
摘要:
The invention relates to a method for establishing deterministic communication routes in a large computer network, wherein all affected end systems and switches of the computer network have a global time and a deterministic communication route is generated on the basis of an existing communication route between two or more end systems of the computer network in that a time-triggered connection manager (TTCM) of an end system reserves the deterministic communication route in a reservation phase by sending a reservation message to each network switch of the existing communication route up to the reservation commitment time (KZPT), and then confirms this deterministic communication route in an accept phase by sending an accept message to the network switches of the existing communication route before the KZPT.
摘要:
A communication method for transmitting TT Ethernet messages is a distributed real-time system, including a plurality of node computers. Each node computer has an Ethernet controller, which by way of a data line is directly connected to a port of a TTE star coupler, said port being uniquely associated with the node computer. A plurality of TTE star couplers are connected among each other by way of one or more data lines to form a TTE network. A TTE message scheduler dynamically calculates the conflict-free schedules for a number of time-controlled messages and signs the schedule provided for each node with a secret part of a public-key signature before it transmits said schedule to the corresponding node computer. Each node computer integrates the signed periodic schedule, which is transmitted to the node computer in the form of a TTE message header of an ETE message, into each dynamically calculated TTE message. The TTE star couplers check whether each dynamically calculated TTE message contains an authentically signed schedule.
摘要:
The aim of the present invention is that of establishing a fault-tolerant global time in a fault-tolerant communication system of a distributed real-time system. For this purpose, a fault-tolerant message switching unit is provided, which is composed of four independent switching units. These four independent switching units jointly establish a fault-tolerant time. The terminal systems are connected to a fault-tolerant message switching unit via two independent fail-silent communication channels, so that the clock synchronization and network connections are preserved, even if a part of the fault-tolerant switching unit or of a communication channel fails.
摘要:
The invention relates to a method for transmitting messages via a time-controlled communication system (ZK) between a number of IP cores, with each IP core having an information-processing subsystem (IVS) and a network controller (NK), with each NK having at least two interfaces, an interface for the ZK and a second interface for the IVS, characterised in that a distinction is drawn between privileged and non-privileged messages of the ZK, and where the transmission parameters relating to the ZK of a port of the NK, such as the periodically recurring transmission time of a time-controlled message and the maximum transmission duration after each transmission time, can be set exclusively by a privileged message via the ZK or directly by a privileged entity (privileged IP core), and where each NK intends to send a message starts to transmit the message autonomously exactly at the time of the next transmission time, and ends the transmission process at the latest after the assigned maximum transmission duration has elapsed. The invention additionally relates to a system-on-chip (SoC) for carrying out a method such as this.
摘要:
The invention relates to a method for transmitting messages in a computer network of a real-time system comprising components in the form of computing nodes and star couplets. A first group of components sends, relays or receives time-controlled messages according to a communication schedule, and a second group of components does not communicate according to a communication schedule. For example, the computing node 104 does not execute a communication schedule, i.e. the computing node 104 does not send time-controlled messages. Instead, the computing node 104 reacts to receiving a message 1-201a by sending a message 1-104a in response. According to the invention, the message 1-201a is sent in a time-controlled manner, for example by a star coupler 201. The computing node 104 receives the message 1-201a at time 17-104a and reacts to receiving the message 1-201a by sending the message 1-104a at time 17-104b to the star coupler 201. The star coupler 201 receives the message 1-104a at time 14-201b. Preferably an upper limit OBS of the maximum time interval between the receiving time 17-104a and the sending time 17-104b is determined in the computing node 104. In this way, the star coupler 201 can schedule the relaying time 14-201c, at which the message 1-104a is relayed in the network, as a time-controlled time. Alternatively, the computing node 104 reacts by reading a current value from a local sensor, by altering the state of an actuator.
摘要:
An information exchange between at least two processes (FEED_PROC-1, FEED_PROC-2, CONSUME_PROC-1) communicating with each other using at least one queue (QUEUE-001) uses a placement plan for determining the order in which messages are placed into the queue. The information feeding processes (FEED_PROC-1, FEED_PROC-2) place pieces of information (MESG-001, MESG-002) into the queue (QUEUE-001), from where an information consuming process (CONSUME_PROC-1) sequentially consumes the pieces of information. The placement plan describes, for at least one possible value of identifying information contained in each of the pieces of information, a respective position (POS-001, POS-002) in the queue (QUEUE-001), such that the pieces of information (MESG-001, MESCG-002) or respective references thereto are placed into the queue according to positions in the queue (QUEUE-001) corresponding to the respective values of the identifying information in the pieces of information.