摘要:
A magnetic element for a high-density memory array includes a resettable layer and a storage layer. The resettable layer has a magnetization that is set in a selected direction by at least one externally generated magnetic field. The storage layer has at least one magnetic easy axis and a magnetization that changes direction based on the spin-transfer effect when a write current passes through the magnetic element. An alternative embodiment of the magnetic element includes an additional multilayer structure formed from a tunneling barrier layer, a pinned magnetic layer and an antiferromagnetic layer that pins the magnetization of the pinned layer in a predetermined direction. Another alternative embodiment of the magnetic element includes an additional multilayer structure that is formed from a tunneling barrier layer and a second resettable layer having a magnetic moment that is different from the magnetic moment of the resettable layer of the basic embodiment.
摘要:
A method and system for providing and magnetic element is disclosed. In one aspect, the magnetic element includes at least a pinned layer, a free layer, and a current confined layer residing between the pinned layer and the free layer. The pinned layer is ferromagnetic and has a first magnetization. The current confined layer has at least one channel in an insulating matrix. The channel(s) are conductive and extend through the current confined layer. The free layer is ferromagnetic and has a second magnetization. The pinned layer, the free layer, and the current confined layer are configured to allow the magnetization of the free layer to be switched using spin transfer. The magnetic element may also include other layers, including layers for spin valve(s), spin tunneling junction(s), dual spin valve(s), dual spin tunneling junction(s), and dual spin valve/tunnel structure(s).
摘要:
A magnetic logic cell includes a magnetic element having a pinned layer, a free layer, and a spacer layer. The pinned and free layers have pinned and free layer magnetizations. The spacer layer resides between the pinned and free layers. In one aspect, the magnetic logic cell includes a first configuration line that is electrically connected to the magnetic element and carries a first current and a second configuration line electrically that is insulated from the magnetic element and the first configuration line and carries a second current. The first or second current alone cannot switch the free layer magnetization. The first and second currents together can switch the free layer magnetization. When the first current is driven through the magnetic element and the second current is provided, the combination sets the pinned layer magnetization direction. In one aspect, the pinned layer magnetization is set by heating the AFM layer to approximately at or above the blocking temperature. In order to configure the logic cell, an initial direction for the free layer magnetization is also set.
摘要:
A magnetic memory device for reading and writing a data state comprises at least three terminals including first, second, and third terminals. The magnetic memory device also includes a spin transfer (ST) driven element, disposed between the first terminal and the second terminal, and a readout element, disposed between the second terminal and the third terminal. The ST driven element includes a first free layer, and a readout element includes a second free layer. A magnetization direction of the second free layer in the readout element indicates a data state. A magnetization reversal of the first free layer within the ST driven element magnetostatically causes a magnetization reversal of the second free layer in the readout element, thereby recording the data state.
摘要:
A method and system for providing a magnetic element capable of being written in a reduced time using the spin-transfer effect while generating a high output signal and a magnetic memory using the magnetic element are disclosed. The magnetic element includes a ferromagnetic pinned layer, a nonmagnetic intermediate layer, and a ferromagnetic free layer. The pinned layer has a magnetization pinned in a first direction. The nonmagnetic intermediate layer resides between the pinned layer and the free layer. The free layer has a magnetization with an easy axis in a second direction. The first direction is in the same plane as the second direction and is oriented at an angle with respect to the second direction. This angle is different from zero and π radians. The magnetic element is also configured to allow the magnetization of the free layer to change direction due to spin transfer when a write current is passed through the magnetic element.
摘要:
A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
摘要:
A non-volatile memory (NVM) system compatible with double data rate, single data rate, or other high speed serial burst operation. The NVM system includes input and output circuits adapted to synchronously send or receive back-to-back continuous bursts of serial data at twice the frequency of any clock input. Each burst is J bits in length. The NVM system includes read and write circuits that are adapted to read or write J bits of data at a time and in parallel, for each of a multitude of parallel data paths. Data is latched such that write time is similar for each bit and is extended to the time it takes to transmit an entire burst. Consequently, the need for small and fast sensing circuits on every column of a memory array, and fast write time at twice the frequency of the fastest clock input, are relieved.
摘要:
A non-volatile memory array includes a plurality of word-lines and a plurality of columns. One of the columns further includes a bistable regenerative circuit coupled to a first, a second, a third, and a fourth signal lines. The column also includes a non-volatile memory cell having current carrying terminals coupled to the first and second signal lines and a control terminal coupled to one of the plurality of word-lines. The column further includes a first transistor and a second transistor. The first transistor is coupled to the first terminal of the bistable regenerative circuit, and to a fifth signal line. The second transistor has a first current carrying terminal coupled to the second terminal of the bistable regenerative circuit, and a second current carrying terminal coupled to a sixth signal line. The gate terminals of the first and second transistors are coupled to a seventh signal line.
摘要:
A write circuit is adapted to provide a same logical bit to each of a multitude of memory cells for storage. Each of the multitude of memory cells stores either the bit or a complement of the bit in response to the write circuit. A read circuit is adapted to receive the bits stored in the multitude of memory cells and to generate an output value defined by the stored bits in accordance with a predefined rule. The predefined rule may be characterized by a statistical mode of the bits stored in the plurality of memory cells. Storage errors in a minority of the multitude of memory cells may be ignored at the cost of lower memory density. The predefined rule may be characterized by a first weight assigned to bits 1 and a second weight assigned to bits 0.
摘要:
A system implementing parallel memory error detection and correction divides data having a word length of K bits into multiple N-bit portions. The system has a separate error processing subsystem for each of the N-bit portions, and utilizes each error processing subsystem to process the associated N-bit portion of the K-bit input data. During memory write operations, each error processing subsystem generates parity information for the N-bit data, and writes the N-bit data and parity information into a separate memory array that corresponds to the error processing subsystem. During memory read operations, each error processing subsystem reads N-bits of data and the associated parity information. If, based on the parity information, an error is detected from the N-bit data, the error processing subsystem attempts to correct the error. The corrected N-bit data from each of the error processing subsystems are combined to reproduce the K-bit word.