Abstract:
A module system of a redox flow battery is disclosed. The system includes a first redox flow battery module, through which first and second electrolytic solutions circulate, a second redox flow battery module, through which first and second electrolytic solutions circulate, first and second storage tanks storing the first electrolytic solutions of the first and second redox flow battery modules, a first main pipe connecting the first redox flow battery module fluidically to the first storage tank, and a first transfer pipe and a first equilibrium pipe which are configured to allow for fluid communication between the first electrolytic solutions of the first and second redox flow battery module. The first main pipe has a diameter greater than that of the first transfer pipe.
Abstract:
The present disclosure relates to a sulfur-carbon composite and a preparing method thereof, and more particularly, to a sulfur-carbon composite having an aggregated structure by performing a pressure heat treatment on a mixture of a carbonaceous conductive material and a sulfur-containing amorphous carbon material and carbonizing the same, and a preparing method thereof.
Abstract:
Disclosed herein is a method for preparing a multilayer metal complex having excellent surface properties. Specifically, the present invention relates to a method for preparing a multilayer metal complex having a low cost metal-core/noble metal-shell structure, which has a high mass fraction of noble metals and exhibits excellent surface properties and dispersity.
Abstract:
The Si-block copolymer core-shell nanoparticles include: a Si core; and a block copolymer shell including a block having relatively relatively high affinity for Si and a block having relatively low affinity for Si and forming a spherical micelle structure around the Si core. Since the Si-block copolymer core-shell nanoparticles exhibit excellent dispersibility and stability in a mixed solution including the same, the Si-block copolymer core-shell nanoparticles are easily applied to an anode active material for lithium secondary battery by carbonization thereof. In addition, since the anode active material for lithium secondary battery using the Si-block copolymer core-shell nanoparticles includes carbonized Si-block copolymer core-shell nanoparticles and pores, the anode active material has long lifespan, high capacity and high energy density, and the block copolymer shell of the carbonized Si-block copolymer core-shell nanoparticles can improve lifespan of lithium secondary battery by buffering volumetric change thereof during charge and discharge.
Abstract:
Provided herein is a system for manufacturing a core of a vacuum insulation panel, the system comprising: a plurality of molding cast parts disposed along one direction, and providing a molding space for core material to be supplied and press-molded; a plurality of raw material suppliers distanced from one another, and supplying core material to the molding space; a press-molder disposed between the raw material suppliers, and receiving the molding cast part where the core material is supplied through the raw material supplier, and pressing the molding space; and a carrier transferring the molding cast part after the core material is supplied by the raw material supplier and the molding space is press-molded by the press-molder.
Abstract:
Provided herein is a method for molding a core of a vacuum insulation panel, the method comprising: supplying core material into a molding space of a molding apparatus comprising a pair of molding plates facing each other and providing a molding space where a core is to be molded, and a molding cast closing the molding space from outside; press-molding a core material by moving the pair of molding plates along their approaching direction to press the core material; moving the press-molded core outside the molding cast while maintaining a certain distance between the pair of molding plates; and discharging the molded core.
Abstract:
The present invention relates to a method for the preparation of hydrogen peroxide through a continuous process, extracting hydrogen peroxide produced from reduction and oxidation of a working solution and recycling the oxidized working solution back to the reduction process, wherein the composition of the working solution, i.e. the composition of 2-alkylanthraquinone and 2-tetrahydroalkylanthraquinone, is optimized to increase the solubility of the quinones and to improve the reaction rate. The working solution comprises 2-alkylanthraquinone, 2-tetrahydroalkylanthraquinone and an organic solvent, wherein 65-95 mol % of the alkyl group of 2-alkylanthraquinone and 2-tetrahydroalkylanthraquinone is amyl and the remaining 5-35 mol % of the alkyl group is ethyl, and the molar ratio of 2-alkylanthraquinone to 2-tetrahydroalkylanthraquinone is from 4:6 to 1:9.
Abstract:
According to a method for manufacturing an anode active material for a secondary battery of the present invention, in manufacturing an anode active material for a secondary battery, having: i) a structure in which a pitch coating layer is formed on a composite material comprising nano silicon and amorphous carbon; or ii) a structure of a graphite core and a nano silicon-pitch shell surrounding the core, a pitch coating layer is formed by using two types of solvent, thereby improving uniformity and density of the pitch coating layer. In addition, an anode material for a secondary battery, comprising the anode active material for a secondary battery of the present invention, can improve initial discharge capacity, initial coulombic efficiency, and cycle life characteristics of a secondary battery.
Abstract:
A titanium nitride etchant composition and a method of forming a semiconductor device using the same are provided. The titanium nitride etchant composition includes hydrogen peroxide, phosphoric acid, and an amine compound, wherein the amine compound includes two or more nitrogen atoms.
Abstract:
The present invention relates to a highly crystalline carbon black and a preparation method therefor and, more specifically, to a highly crystalline carbon black and a preparation method therefor, wherein the carbon black can be used as a fuel cell catalyst carrier requiring a high level of durability and a conductive material for various batteries including secondary batteries. More specifically, the present invention provides: a highly crystalline carbon black having a crystallite size Lc of 4.0 nm or more, a specific surface area (BET) of 50-150 m2/g, and an oil absorption number (OAN) of 150 ml/100 g or more; and a preparation method therefor.