摘要:
A dryer circuit for a pneumatic regulating device of a vehicle, comprising an air dryer, and a first compressor, wherein the first compressor is designed to compress system air present in the pneumatic regulating device, wherein the air dryer, the first compressor and subsystems, which can be connected to the first compressor, of the pneumatic regulating device are arranged in such a way that, in the operating mode of a closed air supply, air delivered between the components of one of the subsystems by the first compressor is delivered so as to bypass the air dryer.
摘要:
An end member assembly (EMI) includes an end member body (400) and a support column (500). The end member body (400) includes an outer side wall and an inner side wall that together at least partially define an end member reservoir. The inner side wall at least partially defines a passage through the end member body. The support column (500) extends into the passage and is accessible from along opposing ends of the passage. A sealing element can be disposed in fluid communication between the end member body and the support column. An elongated gas damping passage can extend through the end member assembly in fluid communication with the end member reservoir. A gas spring assembly can include a flexible spring member (200) that at least partially defines a spring chamber with an end member (900) and the end member assembly (EMI) on opposing ends thereof. A restraining assembly (1000) can be secured within the spring chamber.
摘要:
The present invention includes a hydraulic brake device 4, 5 that generates a braking force corresponding to an operation of a brake pedal 1 performed while the vehicle is traveling, a brake lock means 6 for applying a hydraulic lock on the hydraulic brake device 4, 5 and releasing the hydraulic lock, a brake pedal operation detection means 22 for detecting an operation of the brake pedal 1, and a control means 10 for controlling the brake lock means 6 so as to apply the hydraulic lock on the hydraulic brake device 4, 5 upon detecting via the brake pedal operation detection means 22 a predetermined depressing operation of the brake pedal 1.
摘要:
A closed ride control system for vehicles by which a vehicle body is suspended with respect to at least one vehicle axle and which includes the following components: pressure medium chambers which are connected via branches to a pressure medium line, a compressor, an air dryer which is arranged in a pressure medium line, a pressure medium reservoir which is connected via the compressor to the pressure medium chambers, and a non-return valve arranged in the pressure medium line between an outlet of the air dryer and the directional valve in order to connect the outlet of the air dryer to the pressure medium reservoir.
摘要:
Suspension system for a vehicle, comprising two hydraulic piston-cylinder units (1) comprising a first and a second cylinder chamber (3a, 3b), connected with electro-hydraulic roll control means which are arranged to control the vehicle's roll behavior under electric control of the vehicle's computer system (C), comprising a direction valve, a pump unit and pressure control means. The direction valve is a hydraulically actuatable direction valve (6) having two first and two second switching ports (6a, 6b), interconnectable in three positions, and two hydraulic control ports (6c) which are either indirectly or directly, connected with said pump unit (5, 10). The pressure control means comprise an uni-directional pressure control module (9, 15), connected with both second switching ports of the hydraulically actuatable direction valve. The pump unit is either a bidirectionally energizable pump unit (5) connected with both first switching ports (6a), or a unidirectionally energizable pump unit (10) connected with both second switching ports (6b) of the direction valve, via an electrically actuatable valve (11) having two first and two second, mutually interconnectable, switching ports (11a, 11b). At least a number of the hydraulic components (6, 9, 11, 13, 12, 14) may be integrated in one common housing (16).
摘要:
The present invention includes a hydraulic brake device 4, 5 that generates a braking force corresponding to an operation of a brake pedal 1 performed while the vehicle is traveling, a brake lock means 6 for applying a hydraulic lock on the hydraulic brake device 4, 5 and releasing the hydraulic lock, a brake pedal operation detection means 22 for detecting an operation of the brake pedal 1, and a control means 10 for controlling the brake lock means 6 so as to apply the hydraulic lock on the hydraulic brake device 4, 5 upon detecting via the brake pedal operation detection means 22 a predetermined depressing operation of the brake pedal 1.
摘要:
A vehicle air-suspension system, especially an air-suspension system designed as a partly closed system, and a method for operating the system are provided. The air-suspension system includes at least one compressed-air delivery device, a plurality of air-suspension bellows and valves constructed and arranged for control of the filling of one, several or all air-suspension bellows with compressed air discharged by the compressed-air delivery device. The method avoids an undesirably large pressure rise on the pressure-outlet side of the compressed-air delivery device as the effective delivery capacity of the compressed-air delivery device is automatically controlled as a function of the state defined by the arrangement of the valves.
摘要:
The invention relates to a method for controlling air flow in a level control system for a motor vehicle. Two air flow intervals are indicated for controlling air flow. The first air flow interval I1 is located entirely within air flow interval I2. If the air flow in the level control system is located outside air flow interval I2, an automatic adjustment is made in air flow interval I2. If the air flow is still located outside air flow interval I1 and within second air flow interval I2, the air flow is adjusted to the first air flow interval I1 exclusively when the motor vehicle is in operation.
摘要:
The object of the invention is to simplify the method for controlling the air volume in a closed air supply installation. To this end, the pressure of the pneumatic springs (3, 4) is first determined when air is let out of the pneumatic springs (3, 4) into a defined control chamber, the average volume flow of a defined controlling process between the air chamber (5) and the pneumatic springs (3, 4) is determined, and the pressure in the air chamber (5) is calculated from a functional dependency in relation to the determined pressure in the pneumatic springs (3, 4), the determined average volume flow and the measured external temperature. The pressurised air volume of the air supply installation is then calculated from the calculated or determined pressures, the known or determined volumes of the air chamber (5) and the pneumatic springs (3, 4), and compared with an optimum pressurised air volume.
摘要:
There is disclosed a damping coefficient switching-type hydraulic damper that may automatically switch a damping coefficient without needing supply of energy from the outside at all, and also may always surely exert an energy absorption capacity greater than that of a typical hydraulic damper. While a piston is moving in a direction A, a mechanical drive means composed of a straight gear and a crank mechanism allows an on-off control operation valve, that is, a flow regulating valve to be placed in a closed state, and a damping coefficient is switched to a maximum value Cmax. When a movement of the piston is turned in a direction B at a left-side maximum point of amplitude, the mechanical drive means works to once open the flow regulating valve to perform elimination of a load, so that the damping coefficient is switched to a minimum value (Cmin). When the piston further moves in the direction B, the mechanical drive means works to close the flow regulating valve again, and the damping coefficient is returned to the maximum value (Cmax). Similar working to the above is also applied to a right-side maximum point of amplitude, and seismic response control is attained with repetition of the above operations.