Abstract:
An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm−, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius.According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions. The fiber regions are doped with one or more viscosity-reducing dopants in respective amounts and radial positions that are configured to achieve viscosity matching among the fiber regions in the identified group.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
The present invention relates to a TiO2-containing silica glass containing TiO2 in an amount of from 5 to 10 mass % and at least one of B2O3, P2O5 and S in an amount of from 50 ppb by mass to 5 mass % in terms of the total content.
Abstract translation:本发明涉及含有5〜10质量%的TiO 2和B 2 O 3,P 2 O 5,S中的至少一种的含TiO 2的二氧化硅玻璃,其量为50ppb〜5质量% 总内容
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
An ytterbium-doped optical fiber of the present invention includes: a core which contains ytterbium, aluminum, and phosphorus and does not contain germanium; and a cladding which surrounds this core. The ytterbium concentration in the core in terms of ytterbium oxide is 0.09 to 0.68 mole percent. The molar ratio between the phosphorus concentration in the core in terms of diphosphorus pentoxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 30. The molar ratio between the aluminum concentration in the core in terms of aluminum oxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 32. The molar ratio between the above aluminum concentration in terms of aluminum oxide and the above phosphorus concentration in terms of diphosphorus pentoxide is 1 to 2.5.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
Disclosed is an optical fiber having a silica-based core and a silica-based cladding, the core comprising germania, and oxides of an alkali metal and phosphorous. By appropriately selecting the concentration of alkali metal and phosphorous oxides, fibers exhibiting low attenuation and low hydrogen aged attenuation may be obtained. In a preferred embodiment, the alkali metal oxide is potassium oxide (K2O).