Abstract:
According to one embodiment, a self-adhesive insulation product is provided. The self-adhesive insulation product includes an elongated fibrous insulation blanket having a length, a width, a thickness, and a first major surface and a second major surface which each extend for the length and width of the fibrous insulation blanket. The self-adhesive insulation product also includes a coating of an adhesive applied to the first major surface of the fibrous insulation blanket. The adhesive includes an emulsion of a polymer material and water with the water evaporated so that the adhesive forms a dry layer atop the first major surface. The adhesive is nonbondable or nonadherable to other objects when in the dry state and is bondable or adherable to other objects upon the subsequent application of water.
Abstract:
The invention relates to a liner-free label activator, adapted to be joined to another piece of equipment, such as a thermal printer. The activator has a housing including a reservoir for containing a solvent and a pump connected to the reservoir. The activator also has an applicator connected to the pump for applying solvent to a liner-free label passing thereby, an activator control system to connect to a control system of the printer, and structure for connecting the housing to the printer.
Abstract:
The invention relates to a liner-free label activator, adapted to be joined to another piece of equipment, such as a thermal printer. The activator has a housing including a reservoir for containing a solvent and a pump connected to the reservoir. The activator also has an applicator connected to the pump for applying solvent to a liner-free label passing thereby, an activator control system to connect to a control system of the printer, and structure for connecting the housing to the printer.
Abstract:
A method for manufacturing a label laminate is disclosed. The method includes unwinding a first material layer, unwinding a second material layer, coating the first material layer with at least one water based adhesive layer, supporting the coated first material layer by a metal belt while heating said at least one water based adhesive layer by said metal belt in order to dry said at least one water based adhesive layer, and laminating the first material layer having at least one water based adhesive layer together with the second material layer in order to form the label laminate. The invention further relates to a label laminate and a system for manufacturing a label laminate.
Abstract:
The present invention relates to a fire-resistant wallboard tape. The fire-resistant wallboard tape covers elongated joints in wallboards. This tape includes a fluid-activated, gummed adhesive, a fibrous material and a flame retardant additive. The fluid-activated, gummed adhesive is adhered to a surface of the fibrous material and is activated when wet. And since the fibrous material is a resin-impregnated body, the fibrous material will remain relatively non-moisture absorbent during activation of the fluid-activated, gummed adhesive, thereby allowing the fluid-activated, gummed adhesive to dry within several minutes after activation. This, in combination with, the flame retardant additive allows the fire-resistant wallboard tape to achieve quick drying times and at least a one-hour fire rating.
Abstract:
A fluid activatable adhesive for a liner-free label and methods of using are described. Preferably, the adhesive composition includes a polymer, such as an emulsion polymer formed from monomers selected from the group consisting of butyl acrylate, 2-ethylhexyl acrylate, methyl acrylate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), a salt of AMPS, such as its sodium salt, styrene, and combinations thereof. The adhesive composition adheres to the liner-free label to the surface of a substrate that is at room temperature, at room temperature and wet, cold, or cold and wet. In preferred embodiments, the substrate is glass or plastic, such as polyethylene terephthalate.
Abstract:
Water-soluble triazabutadiene molecules and methods for producing and using such compounds. The triazabutadiene molecules may be more labile at pH levels below physiological pH, such as pH 7, pH 6, pH 5, etc. The triazabutadiene molecules and compounds may be used for depositing diazonium salt and/or cargo in a pH-sensitive manner. The triazabutadiene molecules may alternatively be cleaved in reducing conditions or as a light-catalyzed reaction. The compounds herein may be used for delivery of drugs, as part of detection systems, or for other applications such as underwater adhesive applications.
Abstract:
Provided is a vehicle lamp 1 using a lamp body 3 formed using a resin composition containing a base resin and plant fiber, in which the lamp body 3 and a front cover 2 have good adhesiveness therebetween and there is no separation in the bonding between the lamp body 3 and the front cover 2 even after some time. The lamp body 3 is formed using a resin composition containing a base resin and plant fiber, and in a bonding part between the lamp body 3 and the front cover 2, the bonding is performed using a moisture curing adhesive.
Abstract:
Methods for applying a liner-free, or liner-less label, to a substrate, particularly glass or plastic (e.g., polyethylene terephthalate) substrates, are described herein. The method includes applying an adhesive composition, such as a polymeric coating, to a label face sheet, activating the adhesive composition with an activating fluid, and contacting the label to the substrate. The activating fluid is preferably a mixture of water and one or more organic solvents, such as low molecular weight alcohols.
Abstract:
Provided is a vehicle lamp 1 using a lamp body 3 formed using a resin composition containing a base resin and plant fibre, in which the lamp body 3 and a front cover 2 have good adhesiveness therebetween and there is no separation in the bonding between the lamp body 3 and the front cover 2 even after some time. The lamp body 3 is formed using a resin composition containing a base resin and plant fibre, and in a bonding part between the lamp body 3 and the front cover 2, the bonding is performed using a moisture curing adhesive.