Abstract:
A method for designing and selecting a protein having a stabilized structure compared to a corresponding wild type protein, and proteins having at least six amino acid substitutions with respect to a corresponding wild type protein, designed for improved thermal stability, improved specific activity and/or improved expression levels, are provided herein.
Abstract:
The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.
Abstract:
The present disclosure provides compositions of CRISPR associated (Cas) effector proteins fused to partner proteins. Compositions typically comprise a guide nucleic acid. Also disclosed are the methods and systems for detecting and modifying target nucleic acids using the same. The cells, progenies thereof, and populations thereof produced by the compositions, methods, or systems provided herein are also described.
Abstract:
The present disclosure relates to methods of treating AML, associated with DNMT3A mutations by administering one or more DOT1L inhibitors or related pharmaceutical compositions to subjects in need thereof.
Abstract:
Reduced genome bacteria with improved genetic stability are provided. Also provided are methods of producing polypeptides using the reduced genome bacteria with improved genetic stability.
Abstract:
Disclosed is a method for introducing an exogenous DNA by overcoming the restriction modification barrier of the target bacterium. The method includes the steps of 1) co-expressing all DNA-methyltransferase-encoding genes in the genome of the target bacterium in E. coli in which the restriction modification system thereof has been deleted to obtain a recombinant bacterium A, 2) introducing an exogenous DNA molecule into the recombinant bacterium A for in vivo modification so as to obtain a methylation-modified exogenous DNA molecule, and 3) introducing the methylation-modified exogenous DNA molecule into the target bacterium.
Abstract:
The present invention provides methods for obtaining plants that exhibit useful traits by expression of a DNA methyltransferase fusion protein in progenitor plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants. Recombinant DNA vectors and transgenic plants comprising those vectors that express a DNA methyltransferase fusion protein are also provided.
Abstract:
The present invention provides methods for obtaining plants that exhibit useful traits by expression of a recombinant DNA methyltransferase in progenitor plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants. Recombinant DNA vectors and transgenic plants comprising those vectors that express a recombinant DNA methyltransferase are also provided.
Abstract:
Modified oligonucleotides comprising CpG sites, wherein the cytosine is replaced by cytosine analogs are provided as well as methods of making the oligonucleotides and their use in inhibiting DNA Methyltransferase, inhibiting or reversing methylation of genes and in treating cancer, tumorigenesis and hyper-proliferative disorders.