Abstract:
A cylinder liner for an engine block assembly of an internal combustion engine is provided. The cylinder liner includes a liner member formed of cast iron and presenting an outer surface. A first portion of the outer surface of the liner member is machined to a reduced outside diameter. An aluminum-based material is then thermally sprayed onto the machined first portion, while a second portion of the outer surface remains uncoated. The coated cylinder liner is then placed in a mold, and another aluminum-based material is cast around the coated cylinder liner to form the engine block assembly. During the casting process, the two aluminum-based materials form a strong intermetallic bond between the liner member and the engine block.
Abstract:
A compression mechanism is configured to be used in a scroll compressor. The compression mechanism includes a fixed scroll and a movable scroll. One of the fixed scroll and the movable scroll is a cast iron molding fabricated through semi-molten die casting, and the other of the fixed scroll and the movable scroll is a grey iron casting.
Abstract:
A refrigerant compressor includes a compression unit having a roller and a vane for compressing refrigerant. The vane has a film having first to fourth layers on its metallic base member. The first layer is made of chromium. The second layer is made of chromium and tungsten-carbide. The third layer is made of metal-containing amorphous-carbon containing at least tungsten or tungsten-carbide. The fourth layer is made of non-metal-containing amorphous-carbon containing carbon and hydrogen. In the second layer, chromium content-rate on a first-layer side is larger than on a third-layer side, and tungsten-carbide content-rate on the third-layer side is larger than on the first-layer side. In the third layer, content-rate of the at least tungsten or tungsten-carbide on a second-layer side is larger than on a fourth-layer side. The roller with which an end-edge of the vane slidably-contacts is made of flake graphite cast iron containing molybdenum, nickel and chromium.
Abstract:
A compressor comprises: a cylinder with a compression space; a suction port and a discharge port which communicate with the compression space in the cylinder; a support member which closes an opening of the cylinder; a rotary shaft which is rotatably supported on the support member; a compression member whose one surface crossing an axial direction of the rotary shaft is inclined continuously between a top dead center and a bottom dead center and which is rotated and compresses a fluid to discharge the fluid via the discharge port; and a vane which is disposed between a suction port and the discharge port, abuts on one surface of the compression member and partitions the compression space in the cylinder into high and low pressure chambers.
Abstract:
A compressor slider has a carbon content of 2.0 wt % to 2.7 wt %, a silicon content of 1.0 wt % to 3.0 wt %, a balance of iron that includes unavoidable impurities, graphite that is smaller than the flake graphite of flake graphite cast iron, and a hardness that is greater than HRB 90 but less than HRB 100 in at least a portion of the slider.
Abstract:
A cylinder-crankcase is disclosed that includes a cylinder block having a cylinder head for receiving a spark plug. The cylinder-crankcase also includes a crankcase and a crank arm for supporting a crankshaft. The cylinder block, cylinder head, crankcase and crank arm are a single, monolithic piece.
Abstract:
A scroll compressor includes a scroll member having a base and a generally spiral wrap that extends from the base to define a portion of a compression chamber. The scroll member is made of a cast iron material comprising a microstructure having graphite nodules.
Abstract:
Scrolls made from one or more near-net shaped powder metal processes either wholly or fabricated together from sections. Both “conventional” press and sinter methods and metal injection molding methods will be described.
Abstract:
A compressor used in a refrigerating cycle is provided as a miniaturized and lightweight unit at low production cost by selecting an optimal material to constitute components or by forming the housing in a specific shape so as to allow the components to have smaller wall thicknesses while assuring sufficient strength. A tough material achieving a tensile strength greater than 800 N/mm2 is used when forming at least one of the components constituting the housing and the internal mechanisms. In addition, over the area of the housing where the bottom surface and the inner circumferential surface connect with each other, the bottom surface forms an R-shaped portion and the inner circumferential surface forms a sloping portion or an R-shaped portion.
Abstract translation:在制冷循环中使用的压缩机通过选择构成部件的最佳材料或通过将壳体形成为特定形状而以低生产成本提供为小型轻型单元,以允许部件具有更小的壁厚,同时确保足够的 强度。 当形成构成外壳的部件和内部机构中的至少一个时,使用达到大于800N / mm 2的拉伸强度的韧性材料。 此外,在底面和内周面彼此连接的壳体的区域中,底面形成R形部分,并且内周面形成倾斜部分或R形部分。
Abstract:
A method of high pressure die casting in iron alloy reinforcements for main bearing scantlings in an aluminum alloy engine block for an internal combustion engine. Prior to casting, reinforcements (1) having bores (6) for main bearing screws are placed in a die cavity (21), so that cores for main bearing screws protrude into the bores in each reinforcement on one side of the reinforcement. Then the reinforcements are fixed in the die cavity by placing a cylinder liner core (25) against a surface (27) of the reinforcement on the opposite side of the reinforcement.